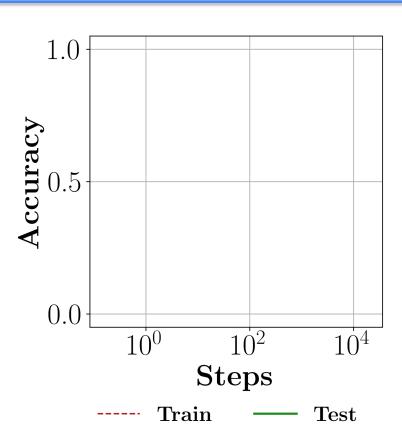
Emergence in non-neural models

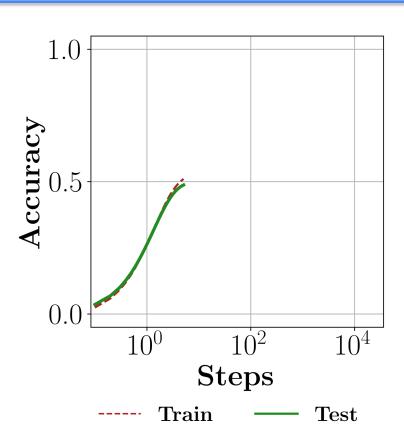
grokking modular arithmetic via average gradient outer product

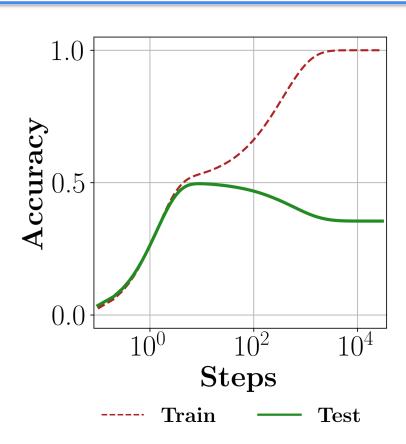
Neil Mallinar, Daniel Beaglehole, Libin Zhu,

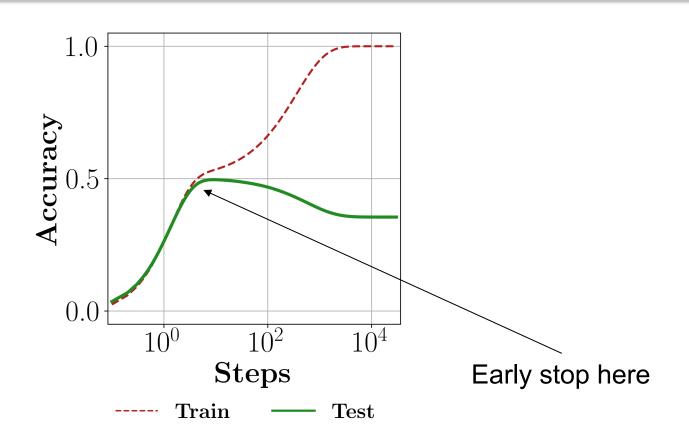
Adityanarayanan Radhakrishnan, Parthe Pandit, Mikhail Belkin

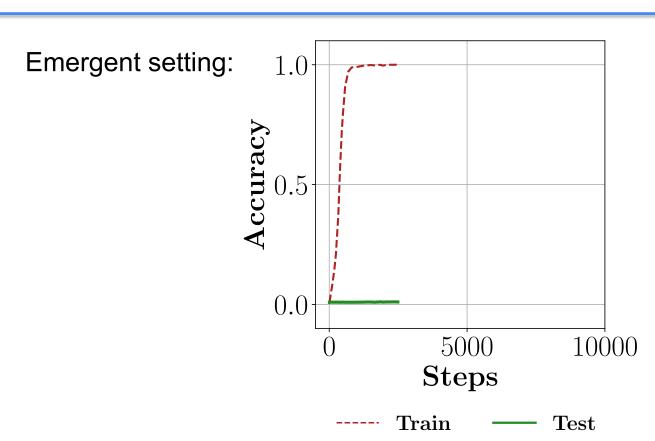
ICML 2025

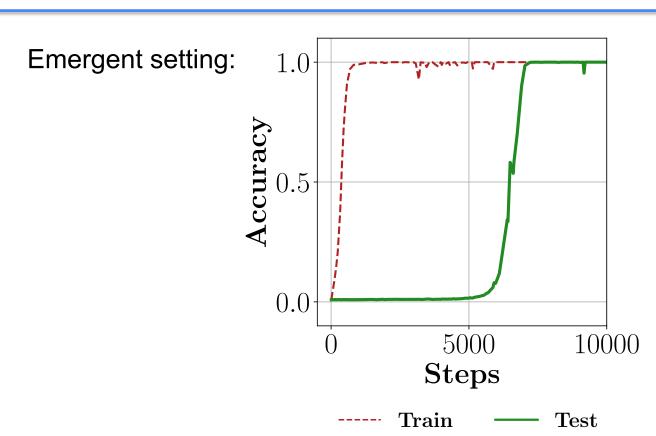




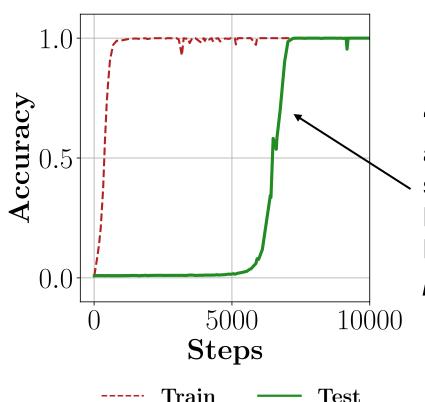




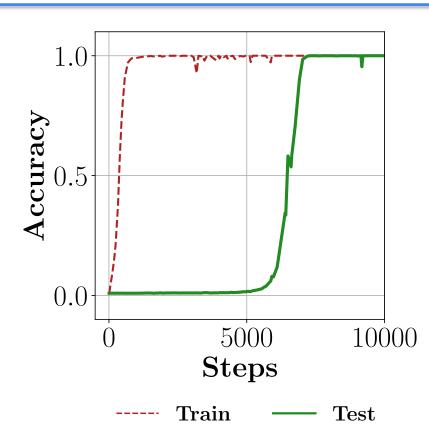




Emergent setting:



"Grokking" in modular arithmetic, originally shown by (Power, Burda, Edwards, Babuschkin & Misra, preprint 2022)



Key Questions:

- Is this phenomenon unique to neural networks?
- If not, is there a unified way to understand this behavior in neural and non-neural models?
- Is there an alterative to test accuracy?

How to set up a model to learn modular arithmetic

Given: digits a, b and prime p

Learn: a + b mod p

Example: p = 3, a = 1, b = 2

$$1 + 2 \mod 3 = 0$$

How to set up a model to learn modular arithmetic

Given: digits a, b and prime p

Learn: a + b mod p

Example: p = 3, a = 1, b = 2

$$1 + 2 \mod 3 = 0$$

+	0	1	2	
0	0	?	2	
1	1	?	0	
2	?	0	?	
(Cayley table)				

How to set up a model to learn modular arithmetic

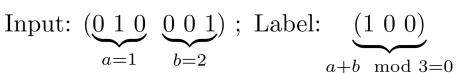
Given: digits a, b and prime p

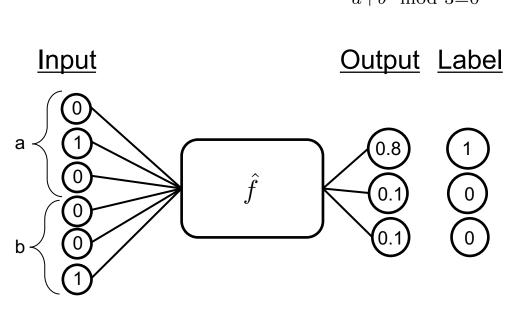
Learn: a + b mod p

Example: p = 3, a = 1, b = 2

$$1 + 2 \mod 3 = 0$$

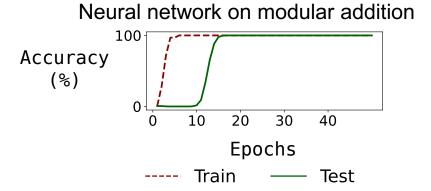
+	0	1	2	
0	0	?	2	
1	1	?	0	
2	?	0	?	
(Cayley table)				





Modular arithmetic and feature learning

Neural networks can "grok" this task



 Non-feature learning methods (e.g. standard kernels) do not generalize (no grokking!)

A general mechanism for feature learning

 Understand features through Average Gradient Outer Product (AGOP) (Härdle & Stoker, JASA 1989)

Given a predictor, f, and training data $x_i \in \mathbb{R}^d$, define:

$$\mathbf{AGOP}(f, \{x_i\}_{i=1}^n) = \frac{1}{n} \sum_{i=1}^n \nabla_x f(x_i) \ \nabla_x f(x_i)^\top \in \mathbb{R}^{d \times d}$$

A general mechanism for feature learning

 Understand features through Average Gradient Outer Product (AGOP) (Härdle & Stoker, JASA 1989)

Given a predictor, f, and training data $x_i \in \mathbb{R}^d$, define: $\mathbf{AGOP}(f, \{x_i\}_{i=1}^n) = \frac{1}{n} \sum_{i=1}^n \nabla_x f(x_i) \ \nabla_x f(x_i)^\top \in \mathbb{R}^{d \times d}$

 AGOP captures neural network features (Radhakrishnan*, Beaglehole*, Pandit & Belkin, Science 2024)

Intuition for AGOP

Given a predictor, f, and training data $x_i \in \mathbb{R}^d$, define:

$$\mathbf{AGOP}(f, \{x_i\}_{i=1}^n) = \frac{1}{n} \sum_{i=1}^n \nabla_x f(x_i) \ \nabla_x f(x_i)^\top \in \mathbb{R}^{d \times d}$$

- Input perturbations on certain features affect the output predictor most
- Intuitively AGOP = supervised PCA
- AGOP decouples features from predictors

- AGOP enables feature learning for general models
- RFM gives an algorithm for this (Radhakrishnan*, Beaglehole*, Pandit & Belkin, Science 2024)

- AGOP enables feature learning for general models
- RFM gives an algorithm for this (Radhakrishnan*, Beaglehole*, Pandit
 & Belkin, Science 2024)

RFM Algorithm:

Given: Training data (X, y), initial features M_0 , total iterations T For $t \in [T]$ iterations:

Step 1: Fit an estimator $f^{(t)}$ to (filtered) training data XM_t and labels y

Step 2: Update features as $M_{t+1} = \mathbf{AGOP}(f^{(t)}, X)$

Repeat Step 1 & Step 2

- AGOP enables feature learning for general models
- RFM gives an algorithm for this (Radhakrishnan*, Beaglehole*, Pandit
 & Belkin, Science 2024)

RFM Algorithm:

Given: Training data (X, y), initial features M_0 , total iterations T

For $t \in [T]$ iterations:

Step 1: Fit an estimator $f^{(t)}$ to (filtered) training data XM_t and labels y

Step 2: Update features as $M_{t+1} = \mathbf{AGOP}(f^{(t)}, X)$

Repeat Step 1 & Step 2

- AGOP enables feature learning for general models
- RFM gives an algorithm for this (Radhakrishnan*, Beaglehole*, Pandit
 & Belkin, Science 2024)

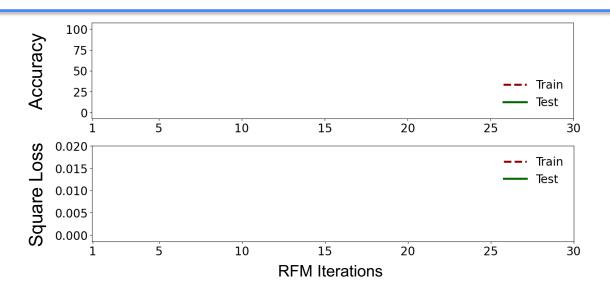
RFM Algorithm:

Given: Training data (X, y), initial features M_0 , total iterations T For $t \in [T]$ iterations:

Step 1: Fit an estimator $f^{(t)}$ to (filtered) training data XM_t and labels y

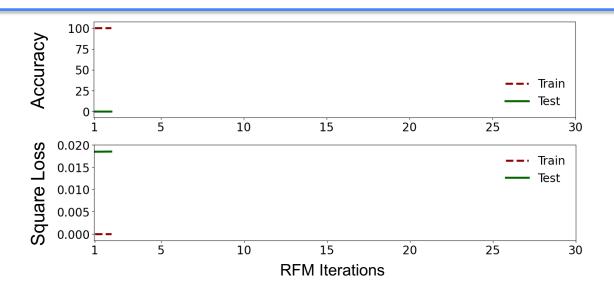
Step 2: Update features as $M_{t+1} = \mathbf{AGOP}(f^{(t)}, X)$

Repeat Step 1 & Step 2



Initialize: $M_1 = I_{2p}$

Iteration (t): 1



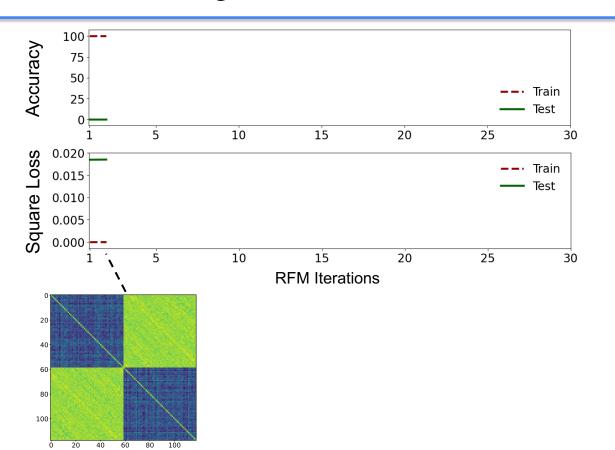
Initialize: $M_1 = I_{2p}$

Iteration (t): 1

(1) Solve kernel regression:

$$K_{tr} = k(X_{tr}, X_{tr}; M_1)$$

$$\alpha = K_{tr}^{-1} y_{tr}$$



Initialize: $M_1 = I_{2p}$ Iteration (t): 1

(1) Solve kernel regression:

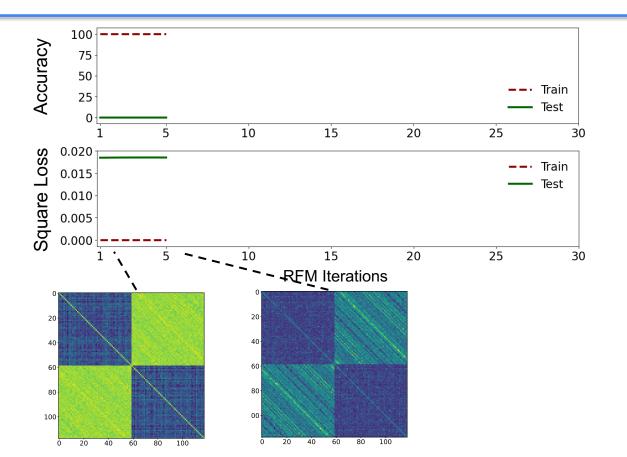
$$K_{tr} = k(X_{tr}, X_{tr}; M_1)$$

$$\alpha = K_{tr}^{-1} y_{tr}$$

(2) Update features:

$$f(x) = \sum_{i=1}^{n} \alpha_i k(x, X_{tr}^{(i)}; M_1)$$

$$M_2 = AGOP(f, X_{tr})$$



Iteration (t): 5

(1) Solve kernel regression:

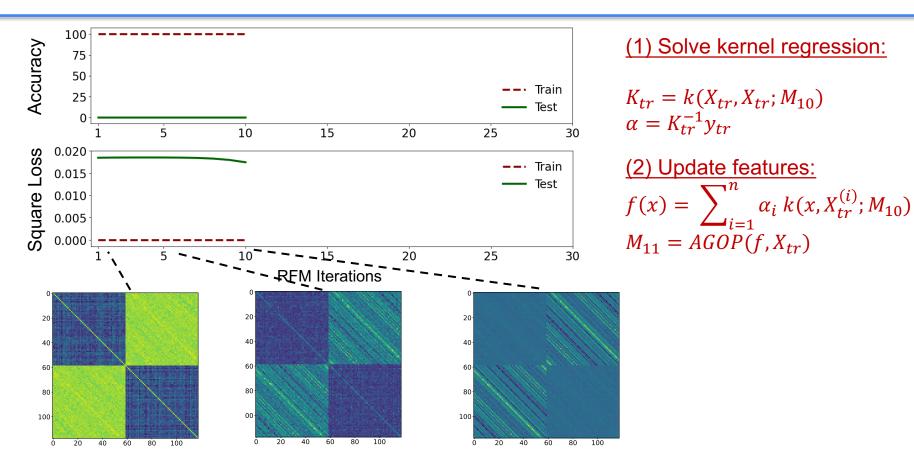
$$K_{tr} = k(X_{tr}, X_{tr}; M_5)$$

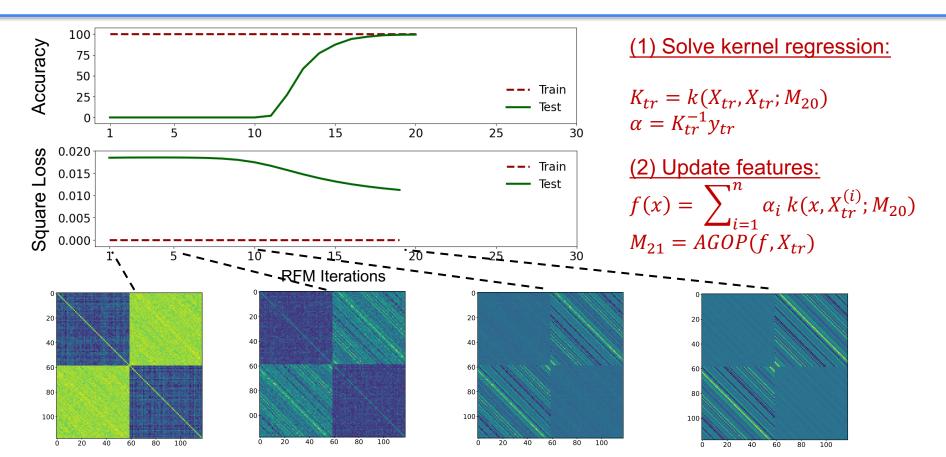
$$\alpha = K_{tr}^{-1} y_{tr}$$

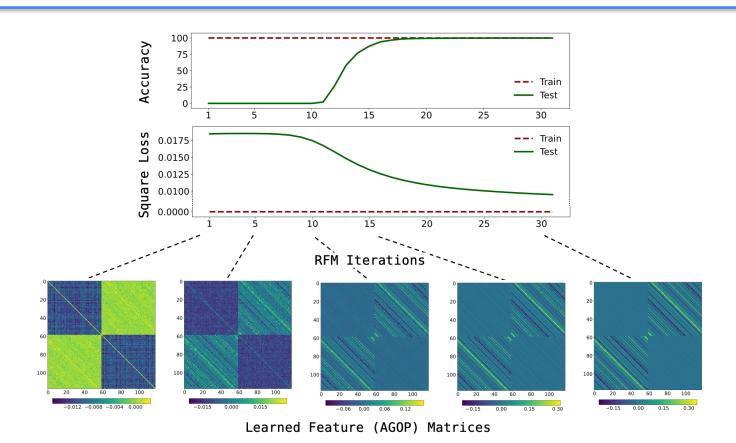
(2) Update features:

$$f(x) = \sum_{i=1}^{n} \alpha_i k(x, X_{tr}^{(i)}; M_5)$$

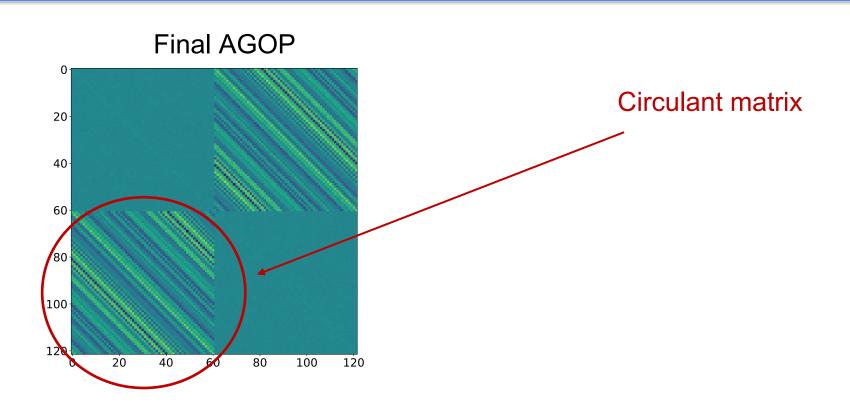
$$M_6 = AGOP(f, X_{tr})$$



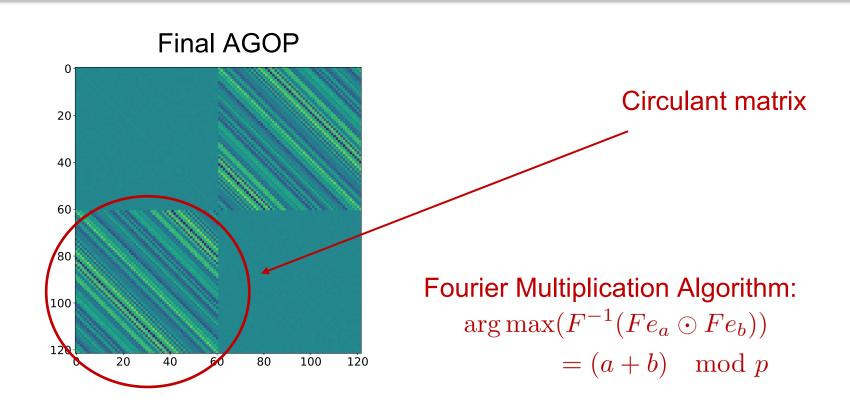




What is happening under the hood for addition?

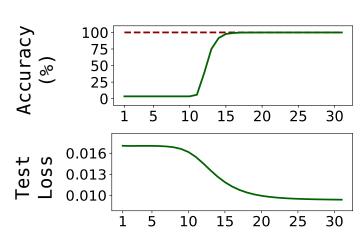


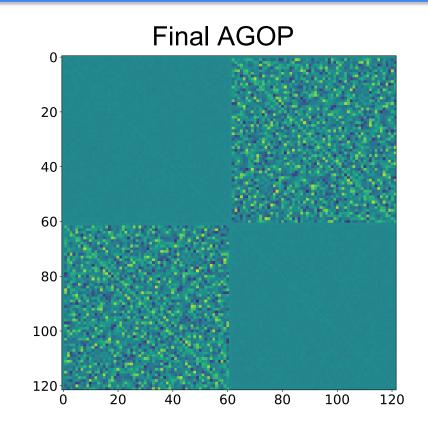
What is happening under the hood for addition?



Kernel RFM groks multiplication mod p

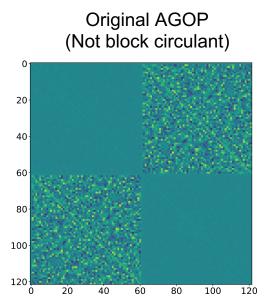
Modular multiplication





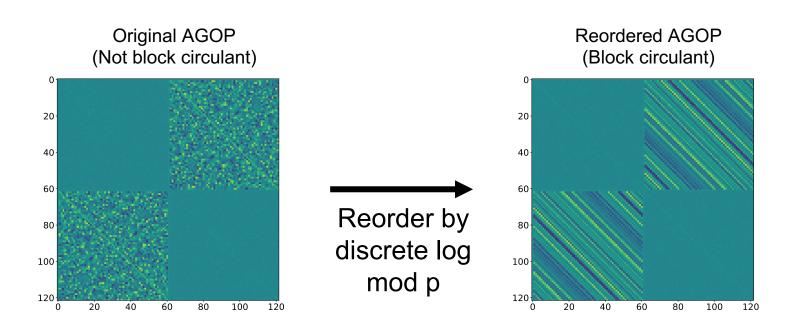
Kernel RFM groks multiplication mod p

- Log turns multiplication into addition: log(ab) = log(a) + log(b)
- There is a notion of discrete logarithm for modular arithmetic

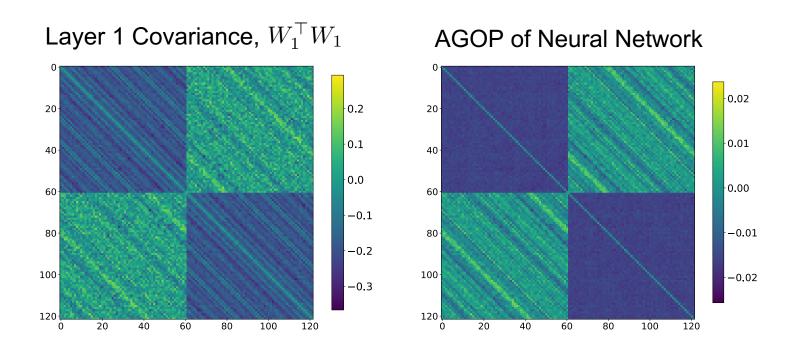


Kernel RFM groks multiplication mod p

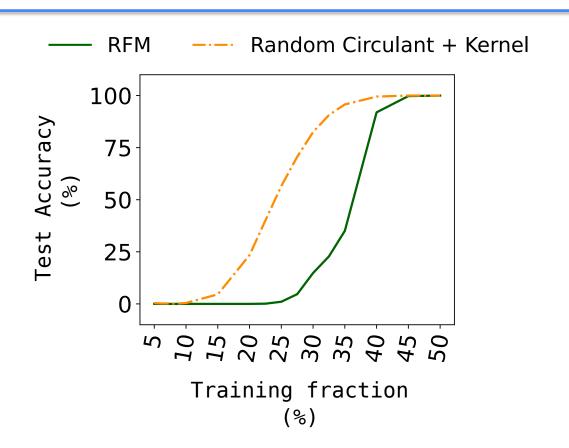
- Log turns multiplication into addition: log(ab) = log(a) + log(b)
- There is a notion of discrete logarithm for modular arithmetic



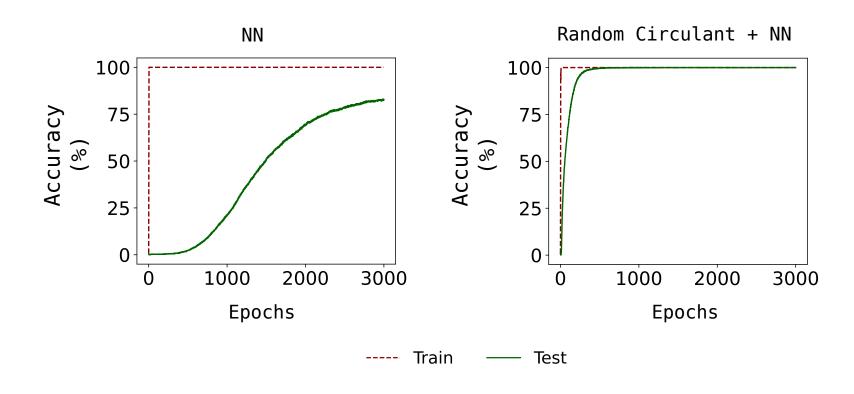
Neural networks also learn block circulant features



Random circulant features are sufficient to generalize



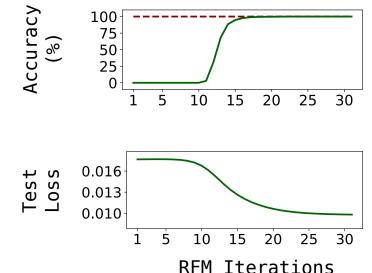
Random circulant features are sufficient to generalize



Progress measures

Back to our original question: how do we track progress?

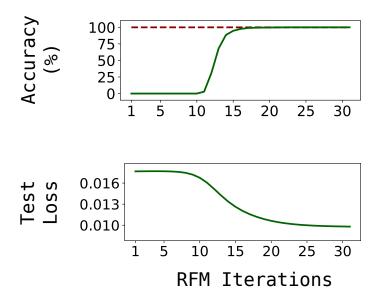
"A priori" measures



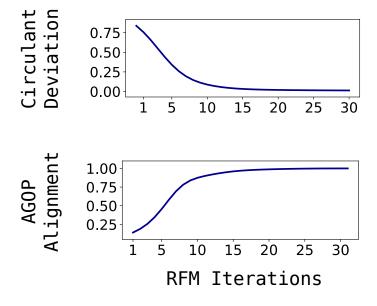
Progress measures

Back to our original question: how do we track progress?

"A priori" measures



"A posteriori" measures



Non-neural models can grok modular arithmetic from data

- We show for the first time that non-neural models can grok modular arithmetic from data
 - a) Grokking is a manifestation of gradual feature learning

Non-neural models can grok modular arithmetic from data

- We show for the first time that non-neural models can grok modular arithmetic from data
 - a) Grokking is a manifestation of gradual feature learning
- 2. AGOP is key to understanding feature learning
 - a) Kernel RFM reproduces unexpected feature learning phenomena
 - b) Model agnostic features, shown by random circulant experiments

Non-neural models can grok modular arithmetic from data

- We show for the first time that non-neural models can grok modular arithmetic from data
 - a) Grokking is a manifestation of gradual feature learning
- 2. AGOP is key to understanding feature learning
 - a) Kernel RFM reproduces unexpected feature learning phenomena
 - b) Model agnostic features, shown by random circulant experiments
- 3. Grokking modular arithmetic is NOT:
 - a) tied to gradient descent based optimization methods
 - b) predicted by training nor testing loss, let alone accuracy

In close collaboration with:

Daniel
Beaglehole
UC San Diego

Libin ZhuUC San Diego →
University of Washington

Adityanarayanan Radhakrishnan The Broad Institute of MIT and Harvard

Parthe Pandit

Misha Belkin UC San Diego

Thank you!

Poster session is tomorrow (Wed, July 16th) from 11am - 1:30pm!

Paper:

Personal Website:

Contact: <u>nmallina@ucsd.edu</u>

P.S. I am on the job market!