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Test accuracy does not track progress!
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Test accuracy does not track progress!

Emergent setting:  1.0-

“Grokking” in modular
arithmetic, originally
. shown by (Power,
Burda, Edwards,
Babuschkin & Misra,
preprint 2022)
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Test accuracy does not track progress!
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Key Questions:

Is this phenomenon unique to
neural networks?

If not, is there a unified way to

understand this behavior in
neural and non-neural models?

Is there an alterative to test
accuracy?



How to set up a model to learn modular arithmetic

Given: digits a, b and prime p
Learn: a + b mod p

Example:p=3,a=1,b=2

1+2mod3=0
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o 0 7 2
1 1 7 0
2 7 0 7
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How to set up a model to learn modular arithmetic

Given: digits a, b and prime p Input: (010 001); Label: (100)
Learn: a + b mod p “1 b=o y
a= = a+b mod 3=0

Example:p=3,a=1,b=2
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Modular arithmetic and feature learning

e Neural networks can “grok” this task

Neural network on modular addition
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e Non-feature learning methods (e.g. standard kernels) do not
generalize (no grokking!)



A general mechanism for feature learning

e Understand features through Average Gradient Outer Product
(AGOP) (Hardle & Stoker, JASA 1989)

Given a predictor, f, and training data z; € R?, define:

AGOP(f {wi}iy) = 5 iy Vaf (@) Vo f(wi) | € R



A general mechanism for feature learning

e Understand features through Average Gradient Outer Product
(AGOP) (Hardle & Stoker, JASA 1989)

Given a predictor, f, and training data z; € R?, define:

AGOP(f {wi}iy) = 5 iy Vaf (@) Vo f(wi) | € R

e AGOP captures neural network features (Radhakrishnan*,
Beaglehole*, Pandit & Belkin, Science 2024)



Intuition for AGOP

Given a predictor, f, and training data z; € R?, define:

AGOP(f,{z;} ) =137  Vaof(x;) Vof(z;)' € RI*4
e Input perturbations on certain features affect the output predictor most

e Intuitively AGOP = supervised PCA

e AGOP decouples features from predictors



Recursive Feature Machines (RFM)

e AGOP enables feature learning for general models
e RFM gives an algorithm for this (Radhakrishnan*, Beaglehole®, Pandit
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RFM Algorithm:

Given: Training data (X, y), initial features M,, total iterations T

For t € [T] iterations:
Step 1: Fit an estimator () to (filtered) training data X M, and labels y
Step 2: Update features as M, = AGOP(f®), X)
Repeat Step 1 & Step 2
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Recursive Feature Machines (RFM)

e AGOP enables feature learning for general models
e RFM gives an algorithm for this (Radhakrishnan*, Beaglehole®, Pandit

& Belkin, Science 2024)
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Given: Training data (X, y), initial features M,, total iterations T

For t € [T] iterations:

Step 1: Fit an estimator f*) to (filtered) training data X M, and labels ¥
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Repeat Step 1 & Step 2




Kernel RFM groks modular addition
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Kernel RFM groks modular addition
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Kernel RFM groks modular addition
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Square Loss
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Kernel RFM groks modular addition
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Kernel RFM groks modular addition
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Kernel RFM groks modular addition
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Kernel RFM groks modular addition

> 100{ ========——mm———m———=—=
© 75
5 50
o 25 ==+ Train
O — Test
< 0

1 5 10 15 20 25 30

~

0 20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100 o 20 40 60
I I [ —
—0.012 ~0.008 ~0.004 0.000 -0.015  0.000 0.015 ~006 000 006 012 ~0.15 0.00 0.15 030 -015 000 015 030

Learned Feature (AGOP) Matrices



What is happening under the hood for addition?

Final AGOP
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What is happening under the hood for addition?

Final AGOP

Circulant matrix

Fourier Multiplication Algorithm:
argmax(F ™! (Fe, ® Fey))
20 40 50 80 100 120 — (CL + b) mod D




Kernel RFM groks multiplication mod p

Final AGOP
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Kernel RFM groks multiplication mod p

e Log turns multiplication into addition: log(ab) = log(a) + log(b)
e There is a notion of discrete logarithm for modular arithmetic

Original AGOP
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Kernel RFM groks multiplication mod p

e Log turns multiplication into addition: log(ab) = log(a) + log(b)
e There is a notion of discrete logarithm for modular arithmetic
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Neural networks also learn block circulant features

Layer 1 Covariance, W AGOP of Neural Network
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Random circulant features are sufficient to generalize

—— RFM Random Circulant + Kernel
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Random circulant features are sufficient to generalize
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Progress measures

Back to our original question: how do we track progress?
“A priori” measures
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Progress measures

Back to our original question: how do we track progress?

“A priori” measures
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Non-neural models can grok modular arithmetic from data

1. We show for the first time that non-neural models can grok modular

arithmetic from data
a)  Grokking is a manifestation of gradual feature learning
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b) Model agnostic features, shown by random circulant experiments



Non-neural models can grok modular arithmetic from data

1. We show for the first time that non-neural models can grok modular

arithmetic from data
a)  Grokking is a manifestation of gradual feature learning

2. AGOP is key to understanding feature learning
a) Kernel RFM reproduces unexpected feature learning phenomena
b) Model agnostic features, shown by random circulant experiments

3. Grokking modular arithmetic is NOT:
a) tied to gradient descent based optimization methods
b) predicted by training nor testing loss, let alone accuracy
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