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Test accuracy does not track progress!
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“Grokking” in modular 
arithmetic, originally 
shown by (Power, 
Burda, Edwards, 
Babuschkin & Misra, 
preprint 2022)

Emergent setting:
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Key Questions:

• Is this phenomenon unique to 
neural networks?

• If not, is there a unified way to 
understand this behavior in 
neural and non-neural models?

• Is there an alterative to test 
accuracy?



How to set up a model to learn modular arithmetic

Given: digits a, b and prime p 
Learn: a + b mod p

Example: p = 3, a = 1, b = 2

1 + 2 mod 3 = 0
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Modular arithmetic and feature learning

● Neural networks can “grok” this task

Accuracy
(%)

Epochs

Neural network on modular addition

● Non-feature learning methods (e.g. standard kernels) do not 
generalize (no grokking!)
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● Understand features through Average Gradient Outer Product 
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A general mechanism for feature learning

● Understand features through Average Gradient Outer Product 
(AGOP) (Härdle & Stoker, JASA 1989)

● AGOP captures neural network features (Radhakrishnan*, 
Beaglehole*, Pandit & Belkin, Science 2024)



Intuition for AGOP

● Input perturbations on certain features affect the output predictor most

● Intuitively AGOP = supervised PCA

● AGOP decouples features from predictors
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Kernel RFM groks modular addition
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RFM Iterations

Iteration (t): 5

(1) Solve kernel regression:

𝐾$% = 𝑘(𝑋$%, 𝑋$%; 𝑀*)
𝛼 = 𝐾$%&!𝑦$%

(2) Update features:

𝑓 𝑥 = /
'(!

)
𝛼' 𝑘(𝑥, 𝑋$%

' ; 𝑀*)

𝑀+ = 𝐴𝐺𝑂𝑃(𝑓, 𝑋$%)
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Kernel RFM groks modular addition



What is happening under the hood for addition?
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Final AGOP



Circulant matrix

Final AGOP

Fourier Multiplication Algorithm:

What is happening under the hood for addition?



Kernel RFM groks multiplication mod p

Final AGOP
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● Log turns multiplication into addition: log(ab) = log(a) + log(b)
● There is a notion of discrete logarithm for modular arithmetic

Original AGOP
(Not block circulant)

Kernel RFM groks multiplication mod p



Reorder by 
discrete log 

mod p

● Log turns multiplication into addition: log(ab) = log(a) + log(b)
● There is a notion of discrete logarithm for modular arithmetic

Original AGOP
(Not block circulant)

Reordered AGOP
(Block circulant)

Kernel RFM groks multiplication mod p



Neural networks also learn block circulant features

Layer 1 Covariance, AGOP of Neural Network



Random circulant features are sufficient to generalize
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Random circulant features are sufficient to generalize
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Progress measures
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Non-neural models can grok modular arithmetic from data

1. We show for the first time that non-neural models can grok modular 
arithmetic from data
a) Grokking is a manifestation of gradual feature learning

2. AGOP is key to understanding feature learning
a) Kernel RFM reproduces unexpected feature learning phenomena
b) Model agnostic features, shown by random circulant experiments

3. Grokking modular arithmetic is NOT:
a) tied to gradient descent based optimization methods
b) predicted by training nor testing loss, let alone accuracy



Daniel 
Beaglehole

UC San Diego

Libin Zhu
UC San Diego → 

University of Washington

Adityanarayanan
Radhakrishnan

The Broad Institute of MIT 
and Harvard

Parthe Pandit
IIT Bombay

Misha Belkin
UC San Diego

In close collaboration with:



Thank you!

Poster session is tomorrow (Wed, July 16th) from 11am - 1:30pm!

Paper:                                     Personal Website: 

Contact: nmallina@ucsd.edu

P.S. I am on the job market!
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