Emergence in non-neural models

grokking modular arithmetic via average gradient outer product

Neil Mallinar, Daniel Beaglehole, Libin Zhu,
Adityanarayanan Radhakrishnan, Parthe Pandit, Mikhail Belkin

ICML 2025

UCSan Diego

Classical approaches to tracking progress

1.01

Accuracy
=
Ot

=
=

Classical approaches to tracking progress

1.01

Accuracy
=
Ot

=
=

Classical approaches to tracking progress

1.0_ i

Accuracy
=
Ot
N\
\

=
=

Classical approaches to tracking progress

1.01

Accuracy
=
Ot

=
=

——————

T~

Early stop here

Test accuracy does not track progress!

Emergent setting: 1.0

Accuracy
-
Ot

-
-

5000 10000
Steps
------ Train — Test

Test accuracy does not track progress!

Emergent setting: 1.0-

Accuracy
-
Ot

=
o

0 5000 10000
Steps

------ Train — Test

Test accuracy does not track progress!

Emergent setting: 1.0-

“Grokking” in modular
arithmetic, originally
. shown by (Power,
Burda, Edwards,
Babuschkin & Misra,
preprint 2022)

Accuracy
-
Ot

=
o

0 5000 10000
Steps

------ Train — Test

Test accuracy does not track progress!

Accuracy

—_
-

=
&

=
o

[T T N T NSRS

v

5000

10000

Steps

—— Test

Key Questions:

Is this phenomenon unique to
neural networks?

If not, is there a unified way to

understand this behavior in
neural and non-neural models?

Is there an alterative to test
accuracy?

How to set up a model to learn modular arithmetic

Given: digits a, b and prime p
Learn: a + b mod p

Example:p=3,a=1,b=2

1+2mod3=0

How to set up a model to learn modular arithmetic

Given: digits a, b and prime p
Learn: a + b mod p

Example:p=3,a=1,b=2

1+2mod3=0
+ 0 1 2
o 0 7 2
1 1 7 0
2 7 0 7

(Cayley table)

How to set up a model to learn modular arithmetic

Given: digits a, b and prime p Input: (010 001); Label: (100)
Learn: a + b mod p “1 b=o y
a= = a+b mod 3=0

Example:p=3,a=1,b=2
Input Output Label

ONO,
@) ©
) ©

1+2mod3=0

S

~N = OO

I I I B

N O NN

/_)L\ .

EEOLE
>

(Cayley table)

Modular arithmetic and feature learning

e Neural networks can “grok” this task

Neural network on modular addition

100‘ _____

I

Accuracy !
(%) !
I

0, ,

Epochs

—————— Train —— Test

e Non-feature learning methods (e.g. standard kernels) do not
generalize (no grokking!)

A general mechanism for feature learning

e Understand features through Average Gradient Outer Product
(AGOP) (Hardle & Stoker, JASA 1989)

Given a predictor, f, and training data z; € R?, define:

AGOP(f {wi}iy) = 5 iy Vaf (@) Vo f(wi) | € R

A general mechanism for feature learning

e Understand features through Average Gradient Outer Product
(AGOP) (Hardle & Stoker, JASA 1989)

Given a predictor, f, and training data z; € R?, define:

AGOP(f {wi}iy) = 5 iy Vaf (@) Vo f(wi) | € R

e AGOP captures neural network features (Radhakrishnan*,
Beaglehole*, Pandit & Belkin, Science 2024)

Intuition for AGOP

Given a predictor, f, and training data z; € R?, define:

AGOP(f,{z;}) =137 Vaof(x;) Vof(z;)' € RI*4
e Input perturbations on certain features affect the output predictor most

e Intuitively AGOP = supervised PCA

e AGOP decouples features from predictors

Recursive Feature Machines (RFM)

e AGOP enables feature learning for general models
e RFM gives an algorithm for this (Radhakrishnan*, Beaglehole®, Pandit
& Belkin, Science 2024)

Recursive Feature Machines (RFM)

e AGOP enables feature learning for general models
e RFM gives an algorithm for this (Radhakrishnan*, Beaglehole®, Pandit

& Belkin, Science 2024)

RFM Algorithm:

Given: Training data (X, y), initial features M,, total iterations T

For t € [T] iterations:
Step 1: Fit an estimator () to (filtered) training data X M, and labels y
Step 2: Update features as M, = AGOP(f®), X)
Repeat Step 1 & Step 2

Recursive Feature Machines (RFM)

e AGOP enables feature learning for general models
e RFM gives an algorithm for this (Radhakrishnan*, Beaglehole®, Pandit

& Belkin, Science 2024)

RFM Algorithm:

Given: Training data (X, y), initial features M,, total iterations T

For t € |T'| iterations:

Step 1: Fit an estimator () to (filtered) training data X M, and labels y
Step 2: Update features as M,,; = AGOP(f®), X)

Repeat Step 1 & Step 2

Recursive Feature Machines (RFM)

e AGOP enables feature learning for general models
e RFM gives an algorithm for this (Radhakrishnan*, Beaglehole®, Pandit

& Belkin, Science 2024)

RFM Algorithm:

Given: Training data (X, y), initial features M,, total iterations T

For t € [T] iterations:

Step 1: Fit an estimator f*) to (filtered) training data X M, and labels ¥
Step 2: Update features as M, = AGOP(f®), X)
Repeat Step 1 & Step 2

Kernel RFM groks modular addition

100
75
50
25

0

Accuracy

== Train
—_— Test

1
0.020

10

15 20 25 30

0.015
0.010
0.005
0.000

Square Loss

== Train
— Test

10

15 20 25 30
RFM lterations

Initialize: M; = I,
Iteration (t): 1

Kernel RFM groks modular addition

100~ -
- . _
- Initialize: M; = I,
5 s0 ' :
3 ¥ - Iteration (t): 1
< L — Test

of - — s - 55 30 (1) Solve kernel regression:
@ 0.020r
a == Train . .
Q 0015 — Test Kir = k(Xer, Xtr; My)
® 0010 a = Kt_rl)’tr
T 0.005
g 0.000 -
@ 5 10 15 20 25 30

RFM lterations

Kernel RFM groks modular addition

Accuracy

Square Loss

100

75

==+ Train
— Test

1 10 15 20 25 30
— == Train
— Test

10 15 20 25 30

RFM lterations

Initialize: My = Iy,
lteration (t): 1

(1) Solve kernel regression:

K¢ = kl(Xtr: Xtr; Ml)
a = Ky Yer

(2) Update features:
n .
FO)=) ark(e XD M)

i=1
M, = AGOP(f, Xy,)

Kernel RFM groks modular addition

Accuracy

Square Loss

100
75+

== Train
—_— Test

10

15

20

25 30

== Train
— Test

=~ REM lterations

15

20

25 30

lteration (t): 5

(1) Solve kernel regression:

K¢ = kl(Xtr: Xtr; MS)
a = Ky Yer

(2) Update features:
n .
FO)=) ak(eXP; Ms)

i=1
My = AGOP(f,X,;)

Kernel RFM groks modular addition

Accuracy

Square Loss

100
75
50
25

01 T

0.020

0.015+
0.010

0.005

0.0001 -

== Train
—_— Test

15

20

25 30

== Train
— Test

—
—
—
—

—
—
—

20

25 30

—
- —
—

0

20
40
608
80

100

(1) Solve kernel regression:

Ky = kl(Xtr: Xers MlO)
a = Ky Yer

(2) Update features:
n ,
FO)= D ak(o XD M)

=1

My, = AGOP(f, Xtr)

Kernel RFM groks modular addition

Accuracy

Square Loss

100
75+
50+
25

0

0.020
0.015+
0.010+
0.005
0.000

== Train
—_— Test

25

== Train
— Test

(1) Solve kernel regression:

Ky = kl(Xtr: Xers MZO)
a = Ky Yer

(2) Update features:
n ,
FO)= D aik(x X My)

=1

My, = AGOP(f,Xy)

Kernel RFM groks modular addition

> 100{ ========——mm———m———=—=
© 75
5 50
o 25 ==+ Train
O — Test
< 0

1 5 10 15 20 25 30

~

0 20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100 o 20 40 60
I I [—
—0.012 ~0.008 ~0.004 0.000 -0.015 0.000 0.015 ~006 000 006 012 ~0.15 0.00 0.15 030 -015 000 015 030

Learned Feature (AGOP) Matrices

What is happening under the hood for addition?

Final AGOP

Circulant matrix

20 40 2 80 100 120

What is happening under the hood for addition?

Final AGOP

Circulant matrix

Fourier Multiplication Algorithm:
argmax(F ™! (Fe, ® Fey))
20 40 50 80 100 120 — (CL + b) mod D

Kernel RFM groks multiplication mod p

Final AGOP

Modular multiplication
20

1001

75

501 40
25-

)

(

Accuracy
%

80

O.

1 5 10 15 20 25 30 60
0.016;
0.013;

Test
Loss

0.0101

1 5 10 15 20 25 30
100

120 [s
0 20 40 60 80 100 120

Kernel RFM groks multiplication mod p

e Log turns multiplication into addition: log(ab) = log(a) + log(b)
e There is a notion of discrete logarithm for modular arithmetic

Original AGOP
(Not block circulant)

20

40

60 ‘

80 _

120 T PN 1
0 20 40 60 80 100 120

Kernel RFM groks multiplication mod p

e Log turns multiplication into addition: log(ab) = log(a) + log(b)
e There is a notion of discrete logarithm for modular arithmetic

Original AGOP Reordered AGOP
(Not block circulant) (Block circulant)

20

40

60 N A —

oo T R s Reorder by
o R discrete log

0 20 40 60 80 100 120

Neural networks also learn block circulant features

Layer 1 Covariance, W AGOP of Neural Network

0 0
20
40
60

0.02
0.2 20
0.1 40 0.01
0.0
60 0.00
-0.1
80 -0.01
-0.2
100 100 —0.02
-0.3
120 120

80
0 20 40 60 80 100 120

Random circulant features are sufficient to generalize

—— RFM Random Circulant + Kernel

100+

~
Ul

N
92}

Test Accuracy
(%)
U
o

o

n oOonNnNom;mowmnmomnao
~N ~N ONON MM S TN

Training fraction

(%)

Random circulant features are sufficient to generalize

Accuracy

(%)

Random Circulant + NN

NN
1007 jmommmmmmmmmmm oo s 1007 -
751 | > 759
m —_
1 o (o]
501 | s % 50
1 O
i @)
251 | < 257!
01! . . . 01
0 1000 2000 3000 0
Epochs
————— Train —— Test

1000

2000

Epochs

3000

Progress measures

Back to our original question: how do we track progress?
“A priori” measures

100{ ========--2
751
501
251
OA

1 5 10 15 20 25 30

0.016
0.013;
0.0101

1 5 10 15 20 25 30
RFM Iterations

Accuracy
(%)

Test
Loss

Progress measures

Back to our original question: how do we track progress?

“A priori” measures

Accuracy
(%)

100{ —=======--2
751
501
251
OA

1 5 10 15 20 25 30

0.016
0.013;
0.0101

Test
Loss

1 5 10 15 20 25 30
RFM Iterations

“A posteriori” measures

0.751
0.501
0.25+

0.001L___ , : : : ,
1 5 10 15 20 25 30

Circulant
Deviation

1.00

0.75
0.501
0.251

1 5 10 15 20 25 30
RFM Iterations

AGOP
Alignment

Non-neural models can grok modular arithmetic from data

1. We show for the first time that non-neural models can grok modular

arithmetic from data
a) Grokking is a manifestation of gradual feature learning

Non-neural models can grok modular arithmetic from data

1. We show for the first time that non-neural models can grok modular

arithmetic from data
a) Grokking is a manifestation of gradual feature learning

2. AGOP is key to understanding feature learning
a) Kernel RFM reproduces unexpected feature learning phenomena
b) Model agnostic features, shown by random circulant experiments

Non-neural models can grok modular arithmetic from data

1. We show for the first time that non-neural models can grok modular

arithmetic from data
a) Grokking is a manifestation of gradual feature learning

2. AGOP is key to understanding feature learning
a) Kernel RFM reproduces unexpected feature learning phenomena
b) Model agnostic features, shown by random circulant experiments

3. Grokking modular arithmetic is NOT:
a) tied to gradient descent based optimization methods
b) predicted by training nor testing loss, let alone accuracy

In close collaboration with:

Daniel Libin Zhu Adityanarayanan
Beaglehole _UC San Diego — Radhakrishnan
UC San Diego University of Washington The Broad Institute of MIT
and Harvard

Parthe Pandit Misha Belkin
[IT Bombay UC San Diego

Thank you!

Poster session is tomorrow (Wed, July 16%") from 11am - 1:30pm!

Paper. ZEW RS Personal Website: it Ltk

Contact: nmallina@ucsd.edu

P.S. | am on the job market!

mailto:nmallina@ucsd.edu

