
Emergence in non-neural models
grokking modular arithmetic via average gradient outer product

Neil Mallinar, Daniel Beaglehole, Libin Zhu,

Adityanarayanan Radhakrishnan, Parthe Pandit, Mikhail Belkin

ICML 2025

Classical approaches to tracking progress

0 5000 10000
Steps

0.0

2.5

5.0

7.5

L
o
ss

Train Test

Classical approaches to tracking progress

0 5000 10000
Steps

0.0

2.5

5.0

7.5

L
o
ss

Train Test

Classical approaches to tracking progress

0 5000 10000
Steps

0.0

2.5

5.0

7.5

L
o
ss

Train Test

Classical approaches to tracking progress

0 5000 10000
Steps

0.0

2.5

5.0

7.5

L
o
ss

Train Test

Early stop here

Test accuracy does not track progress!

0 5000 10000
Steps

0.0

2.5

5.0

7.5

L
o
ss

Train Test

0 5000 10000
Steps

0.0

0.5

1.0

A
cc

u
ra

cy

Emergent setting:

Test accuracy does not track progress!

0 5000 10000
Steps

0.0

2.5

5.0

7.5

L
o
ss

Train Test

0 5000 10000
Steps

0.0

0.5

1.0

A
cc

u
ra

cy

0 5000 10000
Steps

0.0

0.5

1.0

A
cc

u
ra

cy

Emergent setting:

0 5000 10000
Steps

0.0

0.5

1.0

A
cc

u
ra

cy

Test accuracy does not track progress!

0 5000 10000
Steps

0.0

2.5

5.0

7.5

L
o
ss

Train Test

“Grokking” in modular
arithmetic, originally
shown by (Power,
Burda, Edwards,
Babuschkin & Misra,
preprint 2022)

Emergent setting:

0 5000 10000
Steps

0.0

0.5

1.0

A
cc

u
ra

cy
Test accuracy does not track progress!

0 5000 10000
Steps

0.0

2.5

5.0

7.5

L
o
ss

Train Test

Key Questions:

• Is this phenomenon unique to
neural networks?

• If not, is there a unified way to
understand this behavior in
neural and non-neural models?

• Is there an alterative to test
accuracy?

How to set up a model to learn modular arithmetic

Given: digits a, b and prime p
Learn: a + b mod p

Example: p = 3, a = 1, b = 2

1 + 2 mod 3 = 0

How to set up a model to learn modular arithmetic

Given: digits a, b and prime p
Learn: a + b mod p

Example: p = 3, a = 1, b = 2

1 + 2 mod 3 = 0

(Cayley table)

0.1

0.8

How to set up a model to learn modular arithmetic

0

1

0

0

0

1

0.1

Given: digits a, b and prime p
Learn: a + b mod p

Example: p = 3, a = 1, b = 2

1 + 2 mod 3 = 0

(Cayley table)

a

b 0

1

0

Input Output Label

Modular arithmetic and feature learning

● Neural networks can “grok” this task

Accuracy
(%)

Epochs

Neural network on modular addition

● Non-feature learning methods (e.g. standard kernels) do not
generalize (no grokking!)

A general mechanism for feature learning

● Understand features through Average Gradient Outer Product
(AGOP) (Härdle & Stoker, JASA 1989)

A general mechanism for feature learning

● Understand features through Average Gradient Outer Product
(AGOP) (Härdle & Stoker, JASA 1989)

● AGOP captures neural network features (Radhakrishnan*,
Beaglehole*, Pandit & Belkin, Science 2024)

Intuition for AGOP

● Input perturbations on certain features affect the output predictor most

● Intuitively AGOP = supervised PCA

● AGOP decouples features from predictors

Recursive Feature Machines (RFM)

● AGOP enables feature learning for general models
● RFM gives an algorithm for this (Radhakrishnan*, Beaglehole*, Pandit

& Belkin, Science 2024)

Recursive Feature Machines (RFM)

● AGOP enables feature learning for general models
● RFM gives an algorithm for this (Radhakrishnan*, Beaglehole*, Pandit

& Belkin, Science 2024)

RFM Algorithm:

Given: Training data , initial features , total iterations
For iterations:

Step 1: Fit an estimator to (filtered) training data and labels
Step 2: Update features as
Repeat Step 1 & Step 2

Recursive Feature Machines (RFM)

● AGOP enables feature learning for general models
● RFM gives an algorithm for this (Radhakrishnan*, Beaglehole*, Pandit

& Belkin, Science 2024)

RFM Algorithm:

Given: Training data , initial features , total iterations
For iterations:

Step 1: Fit an estimator to (filtered) training data and labels
Step 2: Update features as
Repeat Step 1 & Step 2

Recursive Feature Machines (RFM)

● AGOP enables feature learning for general models
● RFM gives an algorithm for this (Radhakrishnan*, Beaglehole*, Pandit

& Belkin, Science 2024)

RFM Algorithm:

Given: Training data , initial features , total iterations
For iterations:

Step 1: Fit an estimator to (filtered) training data and labels
Step 2: Update features as
Repeat Step 1 & Step 2

Kernel RFM groks modular addition
Ac

cu
ra

cy
Sq

ua
re

 L
os

s

RFM Iterations

Iteration (t): 1
Initialize: 𝑀! = 𝐼"#

Kernel RFM groks modular addition
Ac

cu
ra

cy
Sq

ua
re

 L
os

s

RFM Iterations

Iteration (t): 1
Initialize: 𝑀! = 𝐼"#

(1) Solve kernel regression:

𝐾$% = 𝑘(𝑋$%, 𝑋$%; 𝑀!)
𝛼 = 𝐾$%&!𝑦$%

Kernel RFM groks modular addition
Ac

cu
ra

cy
Sq

ua
re

 L
os

s

RFM Iterations

Iteration (t): 1

(1) Solve kernel regression:

𝐾$% = 𝑘(𝑋$%, 𝑋$%; 𝑀!)
𝛼 = 𝐾$%&!𝑦$%

(2) Update features:

𝑓 𝑥 = /
'(!

)
𝛼' 𝑘(𝑥, 𝑋$%

' ; 𝑀!)

𝑀" = 𝐴𝐺𝑂𝑃(𝑓, 𝑋$%)

Initialize: 𝑀! = 𝐼"#

Kernel RFM groks modular addition
Ac

cu
ra

cy
Sq

ua
re

 L
os

s

RFM Iterations

Iteration (t): 5

(1) Solve kernel regression:

𝐾$% = 𝑘(𝑋$%, 𝑋$%; 𝑀*)
𝛼 = 𝐾$%&!𝑦$%

(2) Update features:

𝑓 𝑥 = /
'(!

)
𝛼' 𝑘(𝑥, 𝑋$%

' ; 𝑀*)

𝑀+ = 𝐴𝐺𝑂𝑃(𝑓, 𝑋$%)

Kernel RFM groks modular addition
Ac

cu
ra

cy
Sq

ua
re

 L
os

s

RFM Iterations

(1) Solve kernel regression:

𝐾$% = 𝑘(𝑋$%, 𝑋$%; 𝑀!,)
𝛼 = 𝐾$%&!𝑦$%

(2) Update features:

𝑓 𝑥 = /
'(!

)
𝛼' 𝑘(𝑥, 𝑋$%

' ; 𝑀!,)

𝑀!! = 𝐴𝐺𝑂𝑃(𝑓, 𝑋$%)

Kernel RFM groks modular addition
Ac

cu
ra

cy
Sq

ua
re

 L
os

s

RFM Iterations

(1) Solve kernel regression:

𝐾$% = 𝑘(𝑋$%, 𝑋$%; 𝑀",)
𝛼 = 𝐾$%&!𝑦$%

(2) Update features:

𝑓 𝑥 = /
'(!

)
𝛼' 𝑘(𝑥, 𝑋$%

' ; 𝑀",)

𝑀"! = 𝐴𝐺𝑂𝑃(𝑓, 𝑋$%)

Kernel RFM groks modular addition

What is happening under the hood for addition?

Circulant matrix

Final AGOP

Circulant matrix

Final AGOP

Fourier Multiplication Algorithm:

What is happening under the hood for addition?

Kernel RFM groks multiplication mod p

Final AGOP
Ac
cu
ra
cy

(%
)

Te
st

Lo
ss

Modular multiplication

● Log turns multiplication into addition: log(ab) = log(a) + log(b)
● There is a notion of discrete logarithm for modular arithmetic

Original AGOP
(Not block circulant)

Kernel RFM groks multiplication mod p

Reorder by
discrete log

mod p

● Log turns multiplication into addition: log(ab) = log(a) + log(b)
● There is a notion of discrete logarithm for modular arithmetic

Original AGOP
(Not block circulant)

Reordered AGOP
(Block circulant)

Kernel RFM groks multiplication mod p

Neural networks also learn block circulant features

Layer 1 Covariance, AGOP of Neural Network

Random circulant features are sufficient to generalize

Te
st
 A
cc
ur
ac
y

(%
)

Training fraction
(%)

Random circulant features are sufficient to generalize

Epochs Epochs

Ac
cu
ra
cy

(%
)

Ac
cu
ra
cy

(%
)

NN Random Circulant + NN

Progress measures

“A priori” measures

Ac
cu
ra
cy

(%
)

Te
st

Lo
ss

RFM Iterations

Back to our original question: how do we track progress?

Progress measures

“A priori” measures

Ac
cu
ra
cy

(%
)

Te
st

Lo
ss

“A posteriori” measures

Ci
rc
ul
an
t

De
vi
at
io
n

AG
OP

Al
ig
nm
en
t

RFM Iterations RFM Iterations

Back to our original question: how do we track progress?

Non-neural models can grok modular arithmetic from data

1. We show for the first time that non-neural models can grok modular
arithmetic from data
a) Grokking is a manifestation of gradual feature learning

Non-neural models can grok modular arithmetic from data

1. We show for the first time that non-neural models can grok modular
arithmetic from data
a) Grokking is a manifestation of gradual feature learning

2. AGOP is key to understanding feature learning
a) Kernel RFM reproduces unexpected feature learning phenomena
b) Model agnostic features, shown by random circulant experiments

Non-neural models can grok modular arithmetic from data

1. We show for the first time that non-neural models can grok modular
arithmetic from data
a) Grokking is a manifestation of gradual feature learning

2. AGOP is key to understanding feature learning
a) Kernel RFM reproduces unexpected feature learning phenomena
b) Model agnostic features, shown by random circulant experiments

3. Grokking modular arithmetic is NOT:
a) tied to gradient descent based optimization methods
b) predicted by training nor testing loss, let alone accuracy

Daniel
Beaglehole

UC San Diego

Libin Zhu
UC San Diego →

University of Washington

Adityanarayanan
Radhakrishnan

The Broad Institute of MIT
and Harvard

Parthe Pandit
IIT Bombay

Misha Belkin
UC San Diego

In close collaboration with:

Thank you!

Poster session is tomorrow (Wed, July 16th) from 11am - 1:30pm!

Paper: Personal Website:

Contact: nmallina@ucsd.edu

P.S. I am on the job market!

mailto:nmallina@ucsd.edu

