A Peer-review Look on Multi-modal Clustering: An Information Bottleneck Realization Method Zhengzheng Lou, Hang Xue, Chaoyang Zhang, Shizhe Hu[†] School of Computer and Artificial Intelligence Zhengzhou University Zhengzhou, Henan, China # Zhengzhou University (Also called "Western Park of Zhengzhou") # **Tourist Spot** ## **Outline** Problem background Previous works Our proposal Experiments Conclusion ## **Outline** Problem background • Previous works • Our proposal Experiments Conclusion #### **Characteristics of multi-modal datasets** In Big Data era, many kinds of multi-modal data are emerging. Multi-feature Image Multi-modal human action video **Property:** Heterogeneous, Large-scale, Diversification, Complexity **Text** ### Limitations of supervised multi-modal classification methods - 1. Time-consuming and cost-expensive for labelling; - 2. Over-reliance on the label information of trained data; - 3. Ignoring the characteristics of the input data itself. #### **Outline** • Problem background Previous works Our proposal Experiments Conclusion #### **Previous multi-modal clustering methods** - Weighted-based methods; - Shared feature learning based methods; - Tensor representation learning based methods; - Multi-modal consensus clustering; - Multi-modal co-clustering; - Multi-modal subspace clustering. ### **Previous multi-modal clustering methods** #### • Weighted-based methods: • discovering the complementary relationship and learning the consistent clustering structure using the learned modal weights. #### **Limitations:** - Lack of trustworthiness in learned weights. - Learning weights in an isolated view. - Extra weight parameters for controlling the weight distribution. ### **Outline** Problem background Previous works Our proposal Experiments Conclusion #### Our proposed method - Peer-review Trustworthy Information Bottleneck (PTIB): - Peer-review Score; - Trustworthy Score; - Modality Weight Learning; - Objective function. #### **Peer-review Score** From the "peer-review" look on multi-modal clustering, one modality can either be an "author" or a "reviewer". The "reviewer" modalities review the work of the "author" modality and produces feedback review scores to evaluate the contribution. #### **Peer-review Score** It adopts the local clustering result of the modality as the "author" work or the "reviewer" criteria. The peer-review score depends on how similar the work is to the criteria, and the normalized mutual information is adopted to quantify this. #### Peer-review Score $$\mu_i^k = \frac{2 \times I(T^i, T^k)}{H(T^i) + H(T^k)}$$ $$\mu^k = \{\mu_1^k, \dots, \mu_i^k, \dots, \mu_m^k\}, i \neq k.$$ ### **Trustworthy Score** We propose to regard the final clustering result as the "EIC / AE", which is then used to evaluate the trustworthiness of "reviewer" modalities in a self-supervision fashion. #### Definition (Major/Minor Category): Given a multi-modal dataset, if the local clustering result of modality is supervised by the final clustering result, the category of correctly assigned samples in a cluster of a specific local clustering result is called the major category, and the set of categories of incorrectly assigned samples in it is called the minor categories. $$H(p) = -p \log_2 p - (1-p) \log_2 (1-p).$$ ### **Trustworthy Score** Cluster Distortion $$d(u_q, c_*) = \begin{cases} 1, & \text{if } 0 \le p < \frac{1}{2}, \\ H(p), & \text{if } \frac{1}{2} \le p \le 1. \end{cases}$$ $D(U, C) = \frac{1}{|U|} \sum_{q=1}^{|U|} d(u_q, c_*).$ $$D(U,C) = \frac{1}{|U|} \sum_{q=1}^{|U|} d(u_q, c_*).$$ $$\sigma_i^f = \frac{1}{D(T^i, T^f)}$$ $$\sigma^k = {\sigma_1^f, \dots, \sigma_i^f, \dots, \sigma_m^f}, i \neq k$$ #### **Modality Weight Learning** $$w^k = \mu^k \bullet \sigma^k = \sum_{i=1, i \neq k}^m \mu_i^k \cdot \sigma_i^f, m > 2$$ $$w^k = \begin{cases} \sum\limits_{i=1, i \neq k}^m \mu_i^k \cdot \sigma_k^f, & \text{if } m = 2, \\ \sum\limits_{i=1, i \neq k}^m \mu_i^k \cdot \sigma_i^f, & \text{if } m > 2. \end{cases}$$ #### **Objective function of PTIB** We propose a novel Peer-review Trustworthy Information Bottleneck method: $$\mathcal{F}_{max}[p(t|x)] = \sum_{i=1}^{m} w^{i} \cdot [I(T;Y^{i}) - \beta^{-1}I(T;X)].$$ ### **Advantages of the PTIB** - Trustworthy weight learning; - Correlation quantization-based learning; - Parameter-free weight learning; - Self-supervision mechanism. ### **Optimization method** #### **Algorithm 1** The Proposed PTIB - 1: **Input:** m joint distributions $\{p(X, Y^i)\}_{i=1}^m$, the number of clusters |T|, the balance parameter β . - 2: **Output:** Final clustering result p(t|x). - 3: Modality Weight Initialization: Compute the initial modality weights with initial peer-review and trustworthy score; - 4: **Random Clustering:** $T \leftarrow$ Random partition of \mathcal{X} into |T| clusters; - 5: repeat - 6: **for all** $x \in \mathcal{X}$ **do** - 7: **Draw:** Draw x from the "old" cluster t^{old} to become a separate cluster $\{x\}$; - 8: **Merger:** Select a "new" cluster t^{new} for the separate cluster $\{x\}$ to merge corresponding to the minimal merger cost in Theorem A.2; - 9: **end for** - 10: Update the trustworthy score using the clustering result in each iteration; - 11: Update the weight for each modality; - 12: until Samples in different clusters remain unchanged or a fixed number of iterations. #### **Outline** Problem background Previous works Our proposal • Experiments Conclusion ## **Datasets** | Dataset | Туре | # Modality | # Samples | # Clusters | | |-----------|-------|------------|-----------|------------|--| | 20NG | Text | 3 | 500 | 5 | | | COIL20 | Image | 3 | 1440 | 20 | | | Event | Image | 3 | 1579 | 8 | | | Soccer | Image | 3 | 280 | 7 | | | 17Flowers | Image | 3 | 1360 | 17 | | | 75Flowers | Image | 2 | 5514 | 75 | | | COIL100 | Image | 2 | 7200 | 100 | | | MMI | Video | 2 | 1760 | 22 | | COIL20 Soccer 17Flowers ### **Compared methods** - 1) Single-modal Clustering: K-Means (KM) and Ncuts. - 2) All-modal Clustering: KM-All, Ncuts-All. - 3) Multi-modal Clustering: - (1) MVIB: It is the first multi-view IB method proposed to address the document clustering problems. - (2) Co(reg): It co-regularizes the data clustering hypotheses among views to learn consistent assignments. - (3) MfIB: It is a weighted multi-feature IB method designed for solving the unsupervised image classification. - (4) RMSC: It solves the noisy multi-view clustering problem by designing a robust spectral method. - (5) LMSC: It learns latent shared representations among views to make the feature subspace more robust and accurate. - (6) MLAN: It automatically tunes the view weights without using parameters. - (7) GMC: It is a graph-based weighted multi-view clustering method by automatically tuning the parameters. - (8) DMIB: It jointly considers the dual correlations about the cross-feature and cross-cluster view correlations. - (9) FPMVS-CAG: It deals the multi-view subspace clustering with the guidance of selected consensus anchors. - (10)MCMLE: It improves the traditional Ncuts method for multi-view clustering by Laplacian embedding to learn a shared binary assignment matrix among different modalities. - (11)TBGL: It focuses on learning tensorized bipartite graphs and considering the intra/inter-view similarities. - (12)TIM: It works by following three principles, i.e., contained, complementary and compatible principle. - (13)SMVAGC-SF: It adaptively fuses multiple anchor graphs with different magnitudes. # **Clustering results** | Method | 20NG | | COIL20 | | Event | | Soccer | | |----------------------|------------------|------------------|-------------------|------------------|------------------|----------------------------|------------------|--------------------| | | Acc | NMI | Acc | NMI | Acc | NMI | Acc | NMI | | KM | 22.28±1.48 | 4.45±2.32 | 53.06±3.20 | 65.06±2.12 | 33.93±4.10 | 19.84±2.69 | 25.82±5.06 | 18.70±7.97 | | Ncuts (TPAMI'00) | 42.80 ± 2.40 | 27.65 ± 2.01 | 74.69 ± 1.30 | 84.01 ± 0.54 | 34.10 ± 1.28 | 14.97 ± 0.40 | 48.21 ± 1.14 | 45.02 ± 2.21 | | KM-All | 21.46±0.68 | 1.76±0.65 | 46.14±6.58 | 60.70±4.51 | 28.85±2.29 | 11.37±2.10 | 22.46±3.94 | 8.14±3.59 | | Ncuts-All (TPAMI'00) | 71.20 ± 0.17 | 57.23 ± 0.10 | 46.14 ± 0.52 | 57.93 ± 0.23 | 35.06 ± 0.69 | 20.11 ± 0.85 | 39.75 ± 0.94 | 34.04 ± 0.57 | | MVIB (DASFAA'07) | 94.22±1.37 | 83.21 ± 3.18 | 61.74 ± 10.51 | 73.65 ± 6.63 | 40.02 ± 2.04 | 23.71±1.56 | 35.79 ± 3.96 | 21.42 ± 4.25 | | Co(reg) (NeurIPS'11) | 20.02 ± 0.62 | 3.15 ± 0.54 | 64.33 ± 1.68 | 83.79 ± 0.45 | 38.58 ± 0.92 | 24.30 ± 0.55 | 24.13 ± 0.53 | 11.43 ± 0.39 | | MfIB (IJCAI'13) | 93.76 ± 2.89 | 85.11 ± 4.54 | 83.81 ± 4.29 | 92.39 ± 1.97 | 48.58 ± 1.50 | 33.41 ± 1.35 | 53.64 ± 2.76 | 49.74 ± 3.44 | | RMSC (AAAI'14) | 37.26 ± 0.91 | 15.70 ± 0.84 | 65.43 ± 3.31 | 79.16 ± 2.35 | 36.58 ± 1.26 | 21.02 ± 0.88 | 28.96 ± 1.90 | 12.16 ± 2.18 | | LMSC (CVPR'17) | 96.16 ± 0.57 | 88.37 ± 1.54 | 71.94 ± 2.72 | 82.18 ± 2.37 | 43.92 ± 2.84 | 27.53 ± 2.58 | 31.25 ± 6.53 | 15.85 ± 8.71 | | MLAN (TIP'18) | 96.40 ± 0.11 | 89.18 ± 0.17 | 87.22±2.30 o | 94.35±1.10 o | 19.90 ± 0.72 | 6.66 ± 0.80 | 28.21 ± 0.01 | 21.27 ± 0.17 | | GMC (TKDE'20) | 98.20 ± 0.00 | 93.92 ± 0.00 | 60.90 ± 0.00 | 84.67 ± 0.00 | 18.11 ± 0.00 | 10.74 ± 0.00 | 29.29 ± 0.00 | 25.82 ± 0.00 | | DMIB (TCYB'22) | 98.30 ± 0.14 | 97.56 ± 0.49 | 65.90 ± 4.03 | 77.70 ± 2.46 | 49.80 ± 3.02 | 32.97 ± 2.38 | 54.07 ± 3.67 | 50.68±2.23 o | | FPMVS-CAG (TIP'22) | 73.80 ± 0.00 | 59.23 ± 0.00 | 69.17 ± 0.00 | 85.11 ± 0.00 | 48.89 ± 0.00 | 31.99 ± 0.00 | 50.14 ± 0.00 | 49.56 ± 0.00 | | MCMLE (TPAMI'22) | 77.40 ± 0.00 | 69.96 ± 0.00 | 85.83 ± 0.00 | 93.48 ± 0.00 | 44.46 ± 0.00 | 30.24 ± 0.00 | 56.07±0.00 o | 50.06 ± 0.00 | | TBGL (TPAMI'23) | 89.11 ± 0.00 | 83.45 ± 0.00 | 86.10 ± 0.00 | 92.41 ± 0.00 | 42.84 ± 0.00 | 28.40 ± 0.00 | 54.39 ± 0.00 | 49.78 ± 0.00 | | TIM (TIP'23) | 99.40±0.00 ∘ | 98.08±0.00 ∘ | 56.70 ± 4.08 | 71.39 ± 0.29 | 54.60 ± 2.50 | 36.86 ± 1.75 | 48.93 ± 0.51 | 41.42 ± 4.09 | | SMVAGC-SF (TIP'24) | 86.07 ± 6.40 | 72.61 ± 3.59 | 75.66 ± 5.10 | 89.43 ± 2.11 | 54.76±1.27∘ | $36.97 {\pm} 0.65 {\circ}$ | 45.14 ± 1.56 | $29.61\!\pm\!1.85$ | | PTIB | 99.80±0.00 • | 99.30±0.00 • | 93.33±0.00 • | 96.46±0.00 • | 60.24±0.16 ◆ | 45.36±0.28 • | 62.86±0.17 • | | | Improve (• VS ∘) | 0.40 (†) | 1.22 (†) | 6.11 (†) | 2.11 (†) | 5.48 (†) | 8.39 (†) | 6.79 (†) | 2.55 (†) | # **Clustering results** | Method | 17Flowers | | 75Flowers | | COIL100 | | MMI | | |----------------------|-----------------------|------------------|------------------|------------------|------------------|--------------------------|--------------------|------------------| | | Acc | NMI | Acc | NMI | Acc | NMI | Acc | NMI | | KM | 22.41 ± 1.67 | 24.31 ± 1.14 | 19.48 ± 0.85 | 35.21 ± 0.75 | 27.96 ± 1.78 | 58.13 ± 1.52 | 26.89 ± 2.95 | 44.15±1.60 | | Ncuts (TPAMI'00) | 27.71 ± 0.72 | 26.43 ± 0.40 | 24.80 ± 0.58 | 41.50 ± 0.19 | 40.97 ± 1.28 | 58.52 ± 0.59 | 38.43 ± 0.47 | 53.17 ± 0.43 | | KM-All | 17.63±1.27 | 13.55±1.86 | 21.13±0.88 | 32.57±0.71 | 29.25±1.57 | 50.55±2.15 | 27.11±1.81 | 38.76±1.59 | | Ncuts-All (TPAMI'00) | 28.77 ± 0.63 | 26.31 ± 0.27 | 27.41 ± 0.31 | 42.41 ± 0.21 | 48.63 ± 0.97 | 64.74 ± 0.56 | 40.53 ± 1.52 | 52.77 ± 0.62 | | MVIB (DASFAA'07) | 21.32±1.05 | 18.28±1.48 | 18.49±0.61 | 33.05±0.45 | 46.71±2.30 | 70.29±1.10 | 44.95±2.60 o | 54.65±1.49 | | Co(reg) (NeurIPS'11) | 26.28 ± 0.49 | 27.12 ± 0.20 | 28.16 ± 0.36 | 44.95 ± 0.09 | 48.35 ± 0.44 | 70.86 ± 0.15 | 34.72 ± 0.53 | 51.31 ± 0.22 | | MfIB (IJCAI'13) | 38.52 ± 2.03 | 37.24±1.40 o | 24.57 ± 0.32 | 40.79 ± 0.37 | 50.52 ± 0.08 | 72.81 ± 0.46 | 40.14 ± 2.09 | 52.50 ± 1.69 | | RMSC (AAAI'14) | 19.70 ± 0.66 | 17.86 ± 0.38 | 26.42 ± 0.97 | 42.95 ± 0.30 | 46.32 ± 0.28 | 69.33 ± 0.45 | 30.28 ± 1.05 | 43.94 ± 0.89 | | LMSC (CVPR'17) | 33.29 ± 2.29 | 31.49 ± 1.60 | 24.58 ± 0.90 | 42.50 ± 0.59 | 48.76 ± 1.45 | 66.74 ± 0.85 | 40.17 ± 1.88 | 51.62 ± 1.29 | | MLAN (TIP'18) | 24.32 ± 1.91 | 22.21 ± 1.24 | 25.58 ± 0.53 | 34.16 ± 1.15 | 45.05 ± 0.41 | 59.55 ± 0.53 | 38.15 ± 0.05 | 52.68 ± 0.04 | | GMC (TKDE'20) | 6.76 ± 0.00 | 4.78 ± 0.00 | 18.52 ± 0.00 | 30.96 ± 0.00 | 38.86 ± 0.00 | 67.55 ± 0.00 | 35.60 ± 0.00 | 55.65±0.00 o | | DMIB (TCYB'22) | 35.48 ± 6.04 | 32.56 ± 5.47 | 26.72 ± 1.13 | 43.13 ± 0.79 | 50.33 ± 1.88 | 72.57 ± 0.87 | 41.10 ± 2.65 | 52.96 ± 2.10 | | FPMVS-CAG (TIP'22) | 30.51 ± 0.00 | 27.27 ± 0.00 | 23.83 ± 0.00 | 38.24 ± 0.00 | 45.03 ± 0.00 | 70.58 ± 0.00 | 36.77 ± 0.00 | 51.03 ± 0.00 | | MCMLE (TPAMI'22) | 32.13 ± 0.00 | 32.11 ± 0.00 | 28.76 ± 0.00 | 47.03 ± 0.00 | 50.47 ± 0.00 | 74.59 ± 0.00 | 42.04 ± 0.00 | 52.97 ± 0.00 | | TBGL (TPAMI'23) | 31.07 ± 0.00 | 32.46 ± 0.00 | 26.52 ± 0.00 | 47.09±0.00 o | 51.66 ± 0.00 | 67.82 ± 0.00 | 43.15 ± 0.00 | 53.27 ± 0.00 | | TIM (TIP'23) | 32.98 ± 3.28 | 29.36 ± 3.60 | 21.83 ± 0.60 | 26.23 ± 1.24 | 51.43 ± 1.72 | 74.98 ± 0.70 | 28.98 ± 1.57 | 39.56 ± 2.96 | | SMVAGC-SF (TIP'24) | $42.41{\pm}2.07\circ$ | $36.40{\pm}1.43$ | 31.92±0.63° | 46.89 ± 0.22 | 56.78±1.93° | $76.78 {\pm} 0.55 \circ$ | $40.93\!\pm\!2.14$ | 53.03 ± 1.25 | | PTIB | 45.29±0.05 ◆ | 42.49±0.08 • | 35.73±0.36 • | 51.91±0.20 ◆ | 61.17±0.23 ◆ | 82.86±0.19 • | 48.30±0.80 • | 60.39±0.49 • | | Improve (• VS ∘) | 2.88 (†) | 5.25 (†) | 3.81 (†) | 4.82 (†) | 4.39 (†) | 6.08 (†) | 3.35 (†) | 4.74 (†) | # Parameter analysis of PTIB on eight datasets #### **Potential for Parameter-free Version** | Datasets | PT | ΊΒ | Parameter | Versus Margin | | | |-----------|------------------|------------------|------------------|------------------|-------|-------| | | Acc | NMI | Acc | NMI | Acc | NMI | | 20NG | 99.80±0.00 | 99.30 ± 0.00 | 99.80±0.00 | 99.30±0.01 | 0.00 | 0.00 | | COIL20 | 93.33 ± 0.00 | 96.46 ± 0.00 | 86.46 ± 0.00 | 93.80 ± 0.00 | -6.87 | -2.66 | | Event | 60.24 ± 0.16 | 45.36 ± 0.28 | 59.01 ± 0.62 | 44.39 ± 0.50 | -1.23 | -0.97 | | Soccer | 62.86 ± 0.17 | 53.23 ± 0.16 | 59.64 ± 0.00 | 51.65 ± 0.01 | -3.22 | -1.58 | | 17Flowers | 45.29 ± 0.05 | 42.49 ± 0.08 | 42.74 ± 1.38 | 40.92 ± 0.82 | -2.55 | -1.57 | | 75Flowers | 35.73 ± 0.36 | 51.91 ± 0.20 | 34.57 ± 0.36 | 51.23 ± 0.24 | -1.16 | -0.68 | | COIL100 | 61.17 ± 0.23 | 82.86 ± 0.19 | 59.93 ± 0.61 | 82.24 ± 0.30 | -1.24 | -0.62 | | MMI | 48.30 ± 0.80 | 60.39 ± 0.49 | 44.26 ± 0.01 | 58.38 ± 0.00 | -4.04 | -2.01 | ## T-SNE visualization of Clustering results on 20NG, COIL20 and MMI datasets ### **Outline** Problem background • Previous works Our proposal Experiments Conclusion ### **Summary** - Propose a novel peer-review trustworthy information bottleneck (PTIB) method for addressing the weighted multi-modal clustering problem.; - Give a new peer-review look on the multi-modal clustering problem, thus designing a peer-review score for evaluating the quality of each modality. A corresponding trustworthy score is newly designed to evaluate the trustworthiness of peer-review score, ensuring the reliability of multi-modal peer-review. - Our approach achieves state-of-the-art performance. # Thank You! Contact for communication: ieshizhehu@gmail.com