

GraphGPT: Generative Pre-trained Graph Eulerian Transformer Alibaba Group

Qifang Zhao, Weidong Ren, Tianyu Li, Hong Liu, Xingsheng He, Xiaoxiao Xu @ Alibaba Inc.

Motivation

- Graph has not benefited from the transformer architecture, like NLP/CV/Audio
- Unifying graph with other modalities is problematic due to inconsistent architecture
- Graph has not benefited from scaling up model sizes

Method

Pre-training & Fine-tuning

Graph-level Task

- PCQM4Mv2 contains > 3.7 million organic molecules from PubChemQC (Nakata & Shimazaki, 2017). Nodes represent atoms (9D attributes: atomic number, chirality, etc.), and edges denote chemical bonds (3D attributes: bond type, stereochemistry, conjugation).
- ogbg-molpcba is a smaller molecular dataset (Wu et al., 2017) with the same node/edge attributes.

PCQM4M-v2: 3.7M molecules

OGBG-MOLPCBA: 438K molecules

Table 2. Results of the graph classification task on the ogbgmolpcba dataset. All the baseline results are from the OGB leaderboard or the corresponding papers. † indicates the model is pretrained on PCQM4M-v2 dataset.

Models	Average Pred Test	cision (%) ↑ Valid	Params
GCN^1	$20.20_{\pm 0.24}$	$20.59_{\pm 0.33}$	0.57M
GIN^2	$22.66_{\pm0.28}$	$23.05 {\scriptstyle \pm 0.27}$	1.92M
$GINE^3$ - VN^4	$29.17_{\pm 0.15}$	$30.65_{\pm0.30}$	6.1M
NGIN ⁵ -VN ⁴	$30.07_{\pm 0.37}$	$30.59_{\pm 0.56}$	44.19M
PDF^6	$30.31_{\pm 0.26}$	$31.15 {\scriptstyle \pm 0.20}$	3.84M
Graphormer-L ^{†7}	$31.40_{\pm 0.32}$	$32.27_{\pm0.24}$	119.5M
EGT-Larger ^{†8}	$29.61_{\pm0.24}$	N/A	110.8M
GRPE-Large ^{†9}	$31.50_{\pm0.10}$	N/A	118.3M
GPTrans-L ^{†10}	$ullet{32.43_{\pm 0.22}}$	N/A	86.0M
GraphGPT-M [†]	$30.13_{\pm 0.25}$	$31.62_{\pm0.24}$	37.7M
GraphGPT- $\mathrm{B}_{12}^{\dagger}$	$31.28_{\pm0.23}$	$32.27_{\pm 0.15}$	113.6M
GraphGPT- B_{24}^{\dagger}	$31.81_{\pm0.1}$	$\overline{32.54_{\pm 0.2}}$	227.3M
1	2		1

- ¹Kipf & Welling (2017), ²Xu et al. (2019), ³Brossard et al. (2020), ⁴Gilmer et al. (2017), ⁵Zhang & Li (2021), ⁶Yang et al. (2023), ⁷Ying et al. (2021), ⁸Hussain et al. (2022), ⁹Park et al. (2022), ¹⁰Chen et al. (2023b)
- *SOTA*: On PCQM4Mv2, GraphGPT achieves a test MAE of **0.0804**, significantly outperforming the previous SOTA (*0.0821*, GPTrans)
- *vs GTs*: GTs like TokenGT, Graphformer, GPS, and GPTrans requires handcrafted features or intricate architectures to encode structural information, while GraphGPT attains superior performance without manual feature engineering.
- vs GNNs: GraphGPT surpasses GNNs by a substantial margin.
- Parameter Efficiency. GraphGPT's larger parameter count may reflect its capacity to implicitly learn features that other GTs encode manually. Generative pre-training also allocates model capacity to generation tasks, potentially limiting discriminative performance of models at smaller scales.

Generative Pre-trained Graph Eulerian Transformer by Q Zhao · 2023 · Cited by 16— We introduceGraphGPT, a novel self-supervised generative pretrained model for graph learning based on the Graph Eulerian Transformer (GET).

Scaling up model sizes consistent improvement up to 200M parameters

Figure 3. Log-log plot of pre-training loss and supervised fine-tuning loss versus the number of non-embedding parameters for the Mini/Small/Medium/Base/Base24 model configurations (see Table 11) on the PCQM4M-v2 dataset.

Graph Structure Understanding (GSU)

ataset stats: totall	y 45000 graph	ns		
	train	valid	test-small	test-large
indices	[0, 30000)	[30000, 35000)	[35000, 40000)	[40000, 45000)
connected graphs	63.13%	62.78%	62.76%	13.78%
avg # node	15.58	15.54%	15.61	63.08
min # node	4	4	4	26
max # node	25	25	25	100

- Pre-training (PT) is highly beneficial: 32% → 92%
- PT on other datasets also improves GSU on this dataset, sometimes even better: a vs b/c/d
 - This holds true even when PT includes node and
- edge attribute prediction: a vs e/f/g• PT on real graphs outperforms random graphs: c vs d, (a+b+c) vs (a+b+d)
- More data & diverse PT enhance generalization: a vs

(a+b)/(a+c)/(b+c) vs (a+b+c)/(a+b+d)

Graph triangle counting: 1~10 (10-class classification)

Models	Accuracy (%) ↑ T-small T-large		Params
	1-Sman	T-large	
GIN^1	$71.53_{\pm 0.94}$	$33.54_{\pm0.30}$	0.15M
Transformer ²	$12.08_{\pm0.31}$	$10.01_{\pm 0.04}$	0.2M
Transformer-LapPE ³	$78.29_{\pm0.25}$	$10.64_{\pm 2.94}$	0.2M
Transformer-RWSE ³	$99.40_{\pm0.10}$	$54.76_{\pm 7.24}$	0.2M
Graphormer ⁴	$99.09_{\pm0.31}$	$\overline{42.34_{\pm 6.48}}$	0.2M
GET-B	32.60 _{±1.86}	$13.99_{\pm 1.78}$	113.5M
GraphGPT-B ^a	$92.16_{\pm0.28}$	$26.51_{\pm 1.01}$	113.5M
GraphGPT-B ^b	$81.38_{\pm0.27}$	$37.68_{\pm0.99}$	113.5M
GraphGPT-B ^c	$99.08_{\pm0.14}$	$38.80_{\pm 3.60}$	113.5M
GraphGPT-B ^d	$90.93_{\pm 0.51}$	$40.79_{\pm 1.40}$	113.5M
GraphGPT-B ^e	$64.28_{\pm0.33}$	$17.38_{\pm0.61}$	113.5M
GraphGPT-B ^f	$86.14_{\pm 7.38}$	$26.94_{\pm 4.80}$	113.5M
GraphGPT-B ^g	$86.57_{\pm 2.74}$	$23.45_{\pm 1.44}$	113.5M
GraphGPT-B ^{a+b} ✓	84.83 _{±0.81}	$39.62_{\pm 1.84}$	113.5M
GraphGPT-B ^{a+c}	$98.68_{\pm0.18}$	$50.07_{\pm 3.28}$	113.5M
GraphGPT-B ^{b+c}	$98.26_{\pm0.30}$	$52.33_{\pm 2.61}$	113.5M
GraphGPT-B ^{a+b+d} <	$89.98_{\pm0.54}$	$33.45_{\pm 2.51}$	113.5M
GraphGPT-Ma+b+c	$95.07_{\pm 0.67}$	$51.72_{\pm 1.12}$	33.7M
GraphGPT-B ^{a+b+c} <	$98.63_{\pm 0.18}$	$58.96_{\pm 1.90}$	113.5M

Pre-trained with: ^aTriangles (45K), ^bReddit-threads (0.22M), ^cInternal dataset (3.1M), ^dRandom graphs (3.1M), ^ePCQM4M-v2 (3.7M), ^fogbl-ppa (1), gogbn-proteins (1).

The Hits@100 score on the test and validation sets. The higher, the better

Edge-level Task

Leaderboard for ogbl-ppa

Package: >=1.1.1

datasets	# of graphs	avg # of nodes	avg # of edges	task-type	metrics
PCQM4Mv2	3,746,619	14.14	14.56	regression	MAE
ogbg-molpcba	437,929	26.0	28.1	multi-label BC	AP
reddit-threads	203,088	23.9	24.9	BC	ROC-AUC
Triangles	45,000	20.9	32.7	multi-class classification	ACC
Internal dataset	3,100,000	24.8	54.7	N/A	N/A
Random Graph _{$p=0.05$}	3,100,000	67.0	124.7	N/A	N/A
Random Graph $_{p=0.03}$	3,100,000	67.1	74.8	N/A	N/A
Random Graph $_{p=0.01}$	3,100,000	67.1	25.0	N/A	N/A
ogbl-ppa	1	576,289	30,326,273	BC	HR@100
ogbl-citation2	1	2,927,963	30,561,187	BC	MRR
ogbn-proteins	1	132,534	39,561,252	multi-label BC	ROC-AUC
ogbn-arxiv	1	169,343	1,166,243	multi-class classification	ACC

Models	ogbl-ppa HR@100 (%)↑	ogbl-citation2 MRR (%) ↑
Common Neighbor Adamic Adar	$27.65_{\pm 0.00}$ $32.45_{\pm 0.00}$	$\begin{array}{ c c c c c c }\hline 51.47_{\pm 0.00} \\ 51.89_{\pm 0.00} \\ \hline \end{array}$
Resource Allocation ¹	$49.33_{\pm 0.00}$	51.89 ± 0.00 51.98 ± 0.00
Node2Vec ²	$22.26_{\pm0.83}$	$61.41_{\pm 0.11}$
Matrix Factorization ³	$32.29_{\pm 0.94}$	$51.86_{\pm 4.43}$
GCN ⁴	$18.67_{\pm 1.32}$	84.74 _{±0.21}
GraphSAGE ⁵	$16.55_{\pm 2.40}$	$82.60_{\pm0.36}$
SEAL ⁶	$48.80_{\pm 3.16}$	$87.67_{\pm0.32}$
AGDN ⁷	$41.23_{\pm 1.59}$	$85.49_{\pm0.29}$
SIEG ⁸	$63.22_{\pm 1.74}$	$90.18_{\pm0.15}$
MPLP ⁹	$65.24_{\pm 1.50}$	$90.72_{\pm0.12}$
RefinedGAE ¹⁰	$73.74_{\pm 0.92}$	$84.55_{\pm0.15}$
GraphGPT-M	$65.44_{\pm0.43}$	$92.82_{\pm 0.27}$
GraphGPT-B	$68.76_{\pm0.67}$	$\overline{93.05_{\pm 0.20}}$
GraphGPT-XXL	$\bf 76.55_{\pm 0.67}$	N/A

Table 4. Results of the link prediction task on the ogbl-ppa and

ogbl-citation2 datasets.

Leaderboard for ogbl-citation2 The MRR score on the test and validation sets. The higher, the better. Package: >=1.2.4 ¹Zhou et al. (2009), ²Grover & Leskovec (2016), ³Mnih & Salakhutdinov (2008). ⁴Kipf & Welling (2017), ⁵Hamilton et al. (2017), ⁶Zhang et al. (2021), ⁷Sun et al (2020), ⁸Shi et al. (2024), ⁹Dong et al. (2023), ¹⁰Ma et al. (2024)

- Performance Superiority: GraphGPT significantly outperforms all baseline methods, including GNNs, heuristic models, and latent-factor approaches, across both datasets.
- Scalability. GraphGPT scales seamlessly to 2 billion parameters, achieving sustained performance gains with increasing model size.
- Transformer Efficacy. To our knowledge, GraphGPT is the first transformer-based model to achieve SOTA results on ogbl-ppa and ogbl-citation2, demonstrating the viability of sequence-driven architectures for large-scale edge-level tasks.

Node-level Task

Table 5. Results of the node classification task on the ogbn-proteins and ogbn-arxiv datasets.

Models	ogbn-proteins ROC-AUC (%) ↑	ogbn-arxiv Accuracy (%) ↑
GCN ^{1,2}	$77.29_{\pm0.46}$	$73.53_{\pm0.12}$
GraphSAGE ^{1,3}	$82.21_{\pm 0.32}$	$73.00_{\pm0.28}$
GAT ^{1,4}	$85.01_{\pm 0.46}$	$73.30_{\pm0.18}$
DRGAT ⁵	N/A	$74.16 _{\pm 0.07}$
AGDN ⁶	$88.65_{\pm0.13}$	$73.41_{\pm 0.25}$
DeeperGCN ⁷	$85.80_{\pm0.17}$	$71.92_{\pm 0.16}$
GraphGPS ^{1,8}	$77.15_{\pm 0.64}$	$71.23_{\pm 0.59}$
NAGphormer ^{1,9}	$72.17 {\scriptstyle \pm 0.45}$	$70.88_{\pm0.24}$
Exphormer ^{1,10}	$77.62_{\pm0.33}$	$72.32_{\pm0.36}$
GOAT ^{1,11}	$79.31_{\pm 0.42}$	$72.76_{\pm0.29}$
NodeFormer ^{1,12}	$77.86_{\pm0.84}$	$67.78_{\pm0.28}$
SGFormer ^{1,13}	$79.92_{\pm0.48}$	$72.76_{\pm0.33}$
Polynormer ^{1,14}	$79.53_{\pm 0.67}$	$73.40_{\pm0.22}$
GraphGPT-S	$83.4_{\pm 0.00}$	$71.2_{\pm 0.00}$
GraphGPT-M	$84.3_{\pm 0.00}$	$71.8_{\pm 0.00}$
GraphGPT-B	$85.5_{\pm 0.00}$	$72.2_{\pm 0.00}$

(2017), ⁵Zhang et al. (2023), ⁶Sun et al. (2020), ⁷Li et al. (2020), ⁸Rampásek et al. (2022), 9Chen et al. (2023a), 10Shirzad et al. (2023), 11Kong et al. (2023), 12Wu et al. (2022), ¹³Wu et al. (2024), ¹⁴Deng et al. (2024)

• Ogbn-proteins: Undirected, weighted graph of 132,534 proteins (nodes) with 8D edge attributes encoding association strengths.

• Ogbn-arxiv: Citation network of 169,343 papers; tasks involve predicting 40 subject categories.

- GraphGPT outperforms/matches classic GNNs. But still lags behind some customized GNN variants.
- It significantly improves or equals GTs.

Various Model Sizes

Model-size	Hidden-size	# of layers	# of heads	Params (excluding e
Mini	256	4	4	4.2M
S (Small)	512	4	8	16.8M
M (Medium)	512	8	8	33.6M
B / B ₁₂ (Base)	768	12	12	113.2M
B ₂₄ (Base24)	768	24	12	226.5M
B ₄₈ (Base48)	768	48	12	453.0M
L (Large)	1024	24	16	402.7M
XXL (XXLarge)	1600	48	25	2.0B

Statistics of GraphGPT models of different sizes. The GraphGPT-Base is of the same scale as Bert-Base (Devlin et al., 2019).

Ablation

Pre-training

Table 6. Ablation study of pre-training on the datasets of various types of tasks. * means both molpcba and PCQM4Mv2 datasets are used for SMTP pre-training, and † indicates that the model is further trained using PCQM4M-v2's regression task. For the PCQM4Mv2 dataset, the metric is MAE, the lower the better.

DATASETS	PRE-TRAINING	TEST	VALID
	X	N/A	0.1086
PCQM4Mv2	NTP	N/A	0.0875
	SMTP	N/A	0.086
	×	12.8	13.31
	NTP	23.85	27.77
OGBG-MOLPCBA	SMTP	27.56	28.74
	SMTP*	27.2	28.49
	SMTP* + FT [†]	28.07	29.01
	×	41.28	40.14
OGBL-PPA	NTP	55.56	54.87
	SMTP	55.68	54.93
	×	57.52	61.19
OGBN-PROTEINS	NTP	75.61	80.47
	SMTP	83.02	86.41

• Pre-training brings substantial improvements.

- SMTP > NTP in most cases.
- Strong in-domain transferability.

Node-reindex

Table 7. Ablation study of node re-indexing on the ogbg-molpcba dataset with two model sizes. PT means pre-training with NTP.

PARAMS	RE-INDEX	PT Loss	TEST	VALID
4.48M	×	0.0844	0.2310	0.2525
7.70171	/	0.0874	0.2385	0.2777
114.12M	X	0.0689	0.2270	0.2621
114.12IVI	/	0.0750	0.2517	0.2857

Node-Identity Coding

Table 8. Ablation study of node identity encoding on the ogbl-ppa and ogbn-proteins datasets using NTP pre-training. NIE stands for Node identity encoding.

DATASETS	PARAMS	NIE	TEST	VALID
OGBL-PPA	14.75M	×	44.38 55.56	45.08 54.87
OGBN-PROTEINS	10.76M	×	60.22 75.61	65.66 80.47

Limitations

- Model size is large, high computational resource is required
- A larger graph dataset is required to demonstrate superiority.
- Transferability: Pre-training is currently limited to same-domain datasets, making generalization to other graph data domains challenging.
- The transferability of graph structure understanding is evident.

Outlook

- General Graph Structure Understanding [Graph] Foundation Model (GFM)
- Specialized Domain Understanding GFM (e.g., molecule)
- Combined with LLM, similar to Llava

Synergy with diffusion LLM (dLLM)

- Speed and Performance: dLLM has shown superior generation speed and comparable performance compared to AR (autoregressive) LLM: Mercury and Gemini Diffusion.
- Same Pre-training: Masked dLLM like <u>LLaDa-8B</u>, <u>Dream-7B</u> share almost the same pre-training objectives as SMTP employed by GraphGPT. • SMTP > NTP: GraphGPT shows dLLM-like pre-training SMTP is much better than AR-like pre-training NTP in most graph datasets.
- Multi-modality: GraphGPT processes graph data in a way closely aligned with dLLM: using sequential tokens, a transformer encoder, and a masked token prediction objective. It implies graph data can be naturally incorporated in the dLLM.
- Al for Science: Some scientific data is naturally represented as graphs—for example, molecules and integrated circuits. Other scientific data, such as proteins and DNA/RNA, is represented as sequences. Unlike language, these data types lack the autoregressive (AR) inductive bias, making them better suited for modeling with dLLM.

References

[1] Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, Stefano Ermon, Aditya Grover, Volodymyr Kuleshov. Mercury: Ultra-Fast Language Models Based on Diffusion. arXiv preprint arXiv:2506.17298, 2025.

[2] Google DeepMind, Gemini Diffusion. url: https://deepmind.google/models/gemini-diffusion/.

[3] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs. arXiv preprint arXiv: 2005.00687, 2020.

[4] Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-Rong Wen, Chongxuan Li. Large Language Diffusion Models. arXiv preprint arXiv: 2502.09992, 2025. (LLaDA-8B)

[5] Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Dream 7B. url: https://hkunlp.github.io/blog/2025/dream/