

SLiM:

One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression

Mohammad Mozaffari¹, Amir Yazdanbakhsh², Maryam Mehri Dehnavi¹

¹ University of Toronto, ² Google DeepMind

LLM Compute Graph

Residual connections, layer norms, and other details of the compute graph are not illustrated.

LLM Compute Graph | Weight Sparsity

Post-training Compression Methods

Sparsity

Set non-important weights to zero

Quantization

Reduce the precision of numbers

3-bit Quantization:

Round to the closest integer Clip the data larger than 7

Sparsity Challenges

The perplexity of models become too big below 50% sparsity!

Maximum 2 × reduction in model size

Quantization Challenges

The perplexity of models become too big below 4-bit quantization!

Maximum 4 × reduction in model size

Higher Compression Ratios

$8 \times \text{Compression ratio case study}$:

Average Accuracy on 6 LM Harness Tasks*

Method	LLaMA-2-7B	LLaMA-2-13B
Dense	56.6%	60.8%
87.5% Sparse**	31.06%	31.59%
2-bit Quantization***	31.81%	31.68%
4-bit Quantization + 50% Unstructured Sparsity	53.62%	57.00%
4-bit Quantization + 2:4 Sparsity	45.49%	51.05%

Combining sparsity and quantization gives better accuracy vs quantization or sparsity alone!

^{*}The tasks include MMLU, PIQA, ARC-Easy, ARC-Challenge, WINOGRANDE, and OpenBookQA

^{**}Best method among Wanda and SparseGPT

^{***}Best method among AbsMax and OPTQ

Higher Compression Ratios

$8 \times \text{Compression ratio case study}$:

Average Accuracy on 6 LM Harness Tasks*

Method	LLaMA-2-7B	LLaMA-2-13B
Dense	56.6%	60.8%
87.5% Sparse**	31.06%	31.59%
2-bit Quantization***	31.81%	31.68%
4-bit Quantization + 50% Unstructured Sparsity	53.62%	57.00%
4-bit Quantization + 2:4 Sparsity	45.49%	51.05%

However, the accuracy gap between compressed and dense models is large

^{*}The tasks include MMLU, PIQA, ARC-Easy, ARC-Challenge, WINOGRANDE, and OpenBookQA

^{**}Best method among Wanda and SparseGPT

^{***}Best method among AbsMax and OPTQ

Accuracy Recovery with Low-rank Adapters

Low-rank adapters can help recover the accuracy of the models^{1,2}

- Challenge: They require millions of tokens to train
- Solution: One-shot Low-rank Adapters compute L and R mathematically (no training needed)

SLiM | Overview

 E_S : Sparsity Error

 E_Q : Quantization Error

L, R: Low-rank Adapters

W^S: Sparse Weight

W^S_O: Sparse and Quantized Weight

SLiM | One-shot Pruning Method

 E_S : Sparsity Error

 E_O : Quantization Error

L, R: Low-rank Adapters

W^S: Sparse Weight

 W_Q^S : Sparse and Quantized Weight

SLiM uses an off-the-shelf method (Wanda¹) for one-shot pruning.

SLiM | Quantization

 E_S : Sparsity Error

 E_O : Quantization Error

L, R: Low-rank Adapters

W^S: Sparse Weight

 W_0^S : Sparse and Quantized Weight

SLiM finds a tractable solution for minimizing the quantization error using novel a probabilistic approach.

Uniform Quantization

Uniform quantization uses a single parameter per tensor to quantize the weight.

• The values larger than α^* get clipped:

$$W_Q = clip(\frac{W}{\alpha^*}, \pm 1) \times 2^{q-1}$$

• Tuning Parameter $\alpha^* \rightarrow$ Minimize the MSE of the quantization.

$$\alpha^* = \arg\min_{\alpha} |W - W_Q|^2$$

Non-convex NP-Hard Problem!

Prior work¹ approximately solves it through exhaustive search.

Uniform Quantization | SLiM-Quant

SLiM-Quant uses a probabilistic approach to formulate the objective function in uniform quantization

Low-rank Adapters

 E_S : Sparsity Error

 E_O : Quantization Error

L, R: Low-rank Adapters

W^S: Sparse Weight

W^S_O: Sparse and Quantized Weight

Goal: Reduce the error added due to pruning and quantization.

Low-rank Adapters | Naïve-LoRA

 E_S : Pruning Error E_Q : Quantization Error F: Saliency Function

Error Norm Minimization

$$L^*, R^* = \arg\min |W - (W_Q^S + LR)|$$

$$L^*, R^* = \arg\min |E_S + E_Q - LR|$$

$$L^*, R^* = SVD(E_S + E_Q)$$

Error norm does not take the importance (saliency) of the weights into account.

Low-rank Adapters | SLiM-LoRA

 E_S : Pruning Error

 E_Q : Quantization Error

F: Saliency Function

 \bar{x} : Average Calibration Input

Error Saliency Minimization

$$L^*, R^* = \arg\min \left| F\left(W - \left(W_Q^S + LR\right)\right) \right|$$

 $L^*, R^* = \arg\min \left| F\left(E_S + E_Q - LR\right) \right|$

Minimizing the saliency of the reconstruction error!

Low-rank Adapters | SLiM-LoRA

 E_S : Pruning Error

 E_O : Quantization Error

F: Saliency Function

 \bar{x} : Average Calibration Input

Error Saliency Minimization

$$L^*, R^* = \arg\min \left| F\left(W - \left(W_Q^S + LR\right)\right) \right|$$

$$L^*, R^* = \arg\min \left| F\left(E_S + E_Q - LR\right) \right|$$

Minimizing the saliency of the reconstruction error!

Saliency Function : $F(M) = diag(\bar{x})M$

$$L^*, R^* = diag\left(\frac{1}{\bar{x}}\right) \left(SVD\left(diag(\bar{x})(E_S + E_Q)\right)\right)$$

Low-rank Adapters | Adapter Quantization

The low-rank adapters in SLiM are further quantized to 4-bits!

SLiM | Zero-shot Accuracy Results

(up to) **5.7%** over SOTA

Average Accuracy over 6 Zero-shot tasks

2:4 Sparsity with 4-bit Weight Quantization

Method			LLaMA 2					
	125M	350M	1.3B	2.7B	6.7B	13B	7B	13B
SOTA*	33.70	33.38	38.75	40.15	44.32	45.64	45.49	51.05
Naïve-LoRA	34.28	33.38	38.36	41.21	44.91	45.25	48.45	51.94
SLiM-LoRA	34.62	34.36	40.61	42.73	45.99	46.24	51.15	54.94

Unstructured Sparsity with 4-bit Weight Quantization

Method			LLaMA 2					
	125M	350M	1.3B	2.7B	6.7B	13B	7B	13B
SOTA*	35.11	35.16	41.02	43.43	46.97	47.38	53.62	57.00
Naïve-LoRA	34.77	34.23	40.40	43.37	46.64	47.30	51.52	55.33
SLiM-LoRA	35.20	35.32	41.85	43.63	47.16	47.96	54.26	57.85

*SOTA refers to the best accuracy among <u>SparseGPT</u> and <u>Wanda</u> for pruning and <u>OPTQ</u>, <u>AWQ</u>, AbsMax, <u>OmniQuant</u>, and <u>AffineQuant</u> for quantization.

SLiM | Optional LoRA Fine-tuning

Average Accuracy over 6 Zero-shot tasks

(up to) 1.7%
Additional Improvement

2:4 Sparsity with 4-bit Weight Quantization

Method	Fine-Tune		ОРТ						LLaMA 2	
		125M	350M	1.3B	2.7B	6.7B	13B	7B	13B	
SLiM-LoRA	×	34.62	34.36	40.61	42.73	45.99	46.24	51.15	54.94	
SLiM-LoRA		35.03	34.58	41.11	43.35	46.71	47.25	52.12	56.60	

2:4 Sparsity with 4-bit Weight Quantization

Method	Fine-Tune		ОРТ						LLaMA 2		
		125M	350M	1.3B	2.7B	6.7B	13B	7B	13B		
SLiM-LoRA	×	35.20	35.32	41.85	43.63	47.16	47.96	54.26	57.85		
SLiM-LoRA		35.59	35.71	42.37	44.58	47.69	48.26	54.69	57.96		

Only 300,000 tokens are used for finetuning!

SLiM | Speedup and Memory Reduction

Speedup

(A100 GPU) **3.8**×

(RTX3060GPU) **4.3**×

Memory Reduction

0.22×

SLiM | Larger Compressed vs. Smaller Dense

For a given parameter size budget, SLiM outperforms other methods! Even dense model!

The accuracy results are from OPT family of models.