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ABSTRACT & INTRODUCTION

Unsupervised skill discovery aims to learn diverse and distinguishable behaviors in open-ended

reinforcement learning. For existing methods, they focus on improving diversity through pure

exploration and mutual information optimization, but they remain limited in terms of efficiency,

especially for high-dimensional situations. Previous work has generally overlooked the critical role

of skill selection in improving learning efficiency and enhancing the diversity of skills.

To address these challenges, we frame skill discovery as a min-max game of skill generation and

policy learning. We propose a regret-aware method that expands the discovered skill space along

the direction of upgradable policy strength. The key insight is that skills with weak strength should

be further explored, while less exploration is needed for skills with converged strength.

To implement this, we propose a method that scores the degree of strength convergence with

regret and guides the skill discovery with a learnable skill generator. To avoid degeneration, skill

generation comes from an up-gradable population of skill generators. Empirical results show

that our method outperforms baselines in both efficiency and diversity. Moreover, our method

achieves a 15% zero-shot improvement in high-dimensional environments compared to existing

methods.
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Figure 1. Comparison between uniform skill discovery and regret-aware skill discovery. Blue lines indicate skills with

converged strength (low regret). Red lines indicate skills need further explore (high regret). By re-balancing

exploration based on regret signals, the regret-aware method exhibits improved efficiency.

PROBLEM FORMULATION

Conditioned MDP. Following prior work, we formulate the unsupervised skill discovery problem

within a conditionedMarkovDecision Process (MDP) framework. ConditionedMDP is formulated

as M = 〈S, A, P, R, µ0, Z〉. The state space is S ⊆ Rn, with s ∈ S denoting an individual state

with n dimensions. The action space is A ⊆ Rm, where a ∈ A represents an individual action

with dimensions m. The transition dynamics is given by the transition function P (s′|s, a) ∈ [0, 1].
µ0(s) denotes the initial state distribution over S. And Z = {z|z ∈ Rd} denotes the latent space

of the skill. Given a skill z, the skill-conditioned policy can be defined as π(a | s, z) ∈ [0, 1] that
satisfies

∑
a∈A π(a | s, z) = 1. With the time horizon denoted as T , the trajectory derived from π

can be formulated as: τ = {(st, at, st+1)}T−1
t=0 . If p(z) denotes the distribution of skills, we have

pπ(τ | z) = µ0p(z)
T−1∏
t=0

π(at | st, z)P (st+1 | st, at),

which indicates the probability of τ derived from π and z. In the context of conditioned MDP, the

learning objective of the unsupervised skill discovery problem is to find a policy π that maximizes

the expectation of the cumulative return over the whole skill space Z , which is formulated as :

Vπ(s) = E at∼π(·|st,z)
z∼p(z)

st+1∼P (·|st,at)

(∑
t

γtr(st, st+1, z) | s0 = s

)
, (1)

where r(st, st+1, z) ∈ R and R : S × S × Z → [−1, 1].

Temporal Representation for Mutual Information. Previous works achieve skill discovery by

maximizing the mutual information (MI) between states and skills:

I(S; Z) = Ep(s,z)

[
log p(s, z)

p(s)p(z)

]
.

Based on the MI objective, METRA leverages Wasserstein Dependency Measure (WDM) to

actively maximize the representation distance between different skill trajectories. The objective

can be expressed using Kantorovich-Rubenstein duality as follows:

IW(S; Z) = sup
‖f‖L≤1

Ep(s,z)[f (s, z)] − Ep(s)p(z)[f (s, z)], (2)

where f scores the similarity between each s and z, and is formulated as an inner production of

the state representation φ(s) and z, i.e., f (s, z) = φ(st)>z. With further derivation, Eq. (2) is

equivalent to maximize the following objective:

IW(sT ; Z) ≈ sup
‖φ‖L≤1

Ep(τ,z)

T−1∑
t=0

(φ(st+1) − φ(st))> z)

 ,

s.t.

h−1∑
t=0

‖φ(st+1) − φ(st)‖ ≤ 1. (3)

Thus, maximization of IW can be achieved by learning a temporal representation φ(·). With that,

METRA further gives a unified reward function for policy learning, i.e.,

r(st, st+1, z) = (φ(st+1) − φ(st))> z. (4)

METHOD

Our proposed method, Regret-aware Skill Discovery (RSD), frames unsupervised skill discovery as

a min-max adversarial optimization problem between an agent policy and a skill generator policy.

The method consists of three core components:

1. Min-Max Optimization Framework The overall objective is to find an equilibrium between

an agent policy (πθ1) that tries to minimize regret by mastering skills, and a skill generator policy

(πθ2) that tries to maximize regret by proposing new, challenging skills. Regret is defined as the

improvement in the agent’s value function at each learning stage k. This adversarial process is
captured by the following objective:

min
θ1

max
θ2

Ez∼Pz
[V

πk
θ1

(s0|z) − V
πk−1

θ1
(s0|z)]

2. Agent Policy Learning in a Bounded Space The agent policy, πθ1, learns to master skills by max-

imizing a specially designed intrinsic reward. To ensure skills are distinguishable and to stabilize

learning, we introduce a bounded temporal representation space where the state representation

φ(s) and the skill vector z live. The agent is rewarded for reducing the distance between its current
state representation and the target skill vector representation. The intrinsic reward is formulated

as:

rφ(st, st+1, z) = ‖z − φ(st)‖ − ‖z − φ(st+1)‖

3. Regret-aware Skill Generator The skill generator, πθ2, is optimized to generate skills that are

challenging for the current agent policy, thereby maximizing its regret. To prevent the generator

from proposing skills that are impossible to learn or redundant, we introduce two regularizers.

The final objective for the generator balances maximizing the expected regret with maintaining

skill diversity (dz) and staying close to the frontier of the agent’s capabilities (dφ). The objective is:

max
θ2

Jθ2(z) = E
z∼πk

θ2
[Regk(z)] + α1dz + α2dφ

dz = DKL

(
p(z|P k

z )
∥∥∥πk

θ2
(z)
)

dφ = max
φseen∼Bk

log πθ2(φseen)
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Figure 2. The leftmost illustrates how the state space is projected onto a bounded temporal representation space.

The right side shows learning process of the skill generator: circles denotes skill distributions, dashed regions

indicate coverage, the larger the more diverse, solid lines represent trajectories, and flags correspond to skills

sampled from these distributions. Collectively, these circles form the population of skill generators for the agent’s

policy. In Part 1, the agent policy expands its coverage by mastering the skills (as seen by the red region outgrowing

the blue region). In Part 2, the trains a new πθ2 to generate high-regret skills, depicted by a red circle replacing a

blue one. Here, Nk represents the skill distribution of the current πθ2.

EXPERIMENTS

Figure 3. Comparison between RSD and baselines, represented as red curves in different environments. The x-axis

shows timesteps of interaction, while the y-axis represents Unique Coordinates, which measure state coverage

achieved through sufficiently sampled skills.

Figure 4. Our method consistently demonstrated superior sample efficiency and final performance compared to

METRA. Particularly at a skill dimension of 32, the performance gains were increasingly pronounced as training

progressed (e.g., at 300k steps was +0.51 compared to +0.36 at dimension 24). These improvements are clearly

visible in performance curve visualizations, underscoring our method’s robustness and scalability.

Efficiency and Diversity: In the simple, skill-symmetric Ant environment, the proposed RSD

method demonstrated performance competitive with top baselines like METRA and LSD. In

the more complex, skill-asymmetric maze environments, RSD significantly outperformed all

baselines in both learning efficiency and final state coverage. This is because baseline

methods tend to explore primary directions akin to PCA, which is less effective in complex

environments. In contrast, RSD’s non-uniform sampling and non-unit skill vectors allow it to

discover more granular and diverse skills.

Zero-shot Performance: In zero-shot navigation tasks requiring no additional training, RSD

achieved the best results on both success rate (AR) and final distance to goal (FD). The

improvement in success rate was particularly pronounced in the higher-dimensional

Antmaze-large environment.

Additional Experiments: The method’s effectiveness was further validated in the challenging,

pixel-based Kitchen environment to demonstrate its capabilities in skill-asymmetric scenarios.
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