
● SFT Loss: 
Questioning Comprehension
Accuracy
Instruction Following

● SFT2 Loss:
Further Question understanding

● ECE loss:
Calibration controlling

Restoring Calibration for Aligned Large Language Models: 

A Calibration-Aware Fine-Tuning Approach

Introduction

● Calibration: A model is well-calibrated when its confidence matches its accuracy

● Calibration of LLMs: evaluated on a multiple-choice question and its 

corresponding correct answer

Universal Issue across: Models, Alignment approaches
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Preference Alignment leads to Poor Generalization (GPT-4 technical Report)

Experiments

Calibratable Regime v.s.Non Calibratable Regime

(R)CFT: An EM-based Algorithm

Why Good Calibration is Important?
● Calibration Regime: 

ECE can reach zero without sacrificing 

accuracy (or broadly LLM Performance )

● Non-Calibration Regime: 

Fundamental trade-off between ECE and 

accuracy  (or broadly LLM Performance )

● Blindly trusting ML model predictions can be fatal in high-
stakes environments

● Despite high accuracy (e.g., 95%), models cannot identify 
which predictions are incorrect

● Assessing confidence for individual predictions is essential, 
not just accuracy rates

● In medical diagnostics and other high-risk scenarios, 
neglecting prediction confidence can lead to severe 
consequences

● Understanding and quantifying prediction uncertainty is 
crucial for responsible implementation

● Modern models tend to be overconfident in their predictions 
[1,2], which must be addressed in model design

Calibration Definitions
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Key Research Questions

1. Why does preference alignment affect calibration?

2. How can we restore calibration while maintaining the benefits of alignment?

Key Finding - Preference Collapse

● Preference Collapse Phenomenon:
○ Definition: Aligned models excessively favor certain responses over others
○ Results: Preference ratio exceeding human preference proportions
○ π(y_w│x)/(π(y_w│x)  + π(y_l |x)) > P(y_w≻y_l│x)

● Multiple-Choice Generalization:
○ Collapse appears with strong preference for one option (A/B/C/D)
○ Leads to high confidence regardless of correctness

● Empirical Evidence:
○ Observed across Llama3.1, Vicuna, Olmo2, and Mistral models which will be demonstrated 

in the following experimental results

Theoretical Framework - Probabilistic Generative Model

● Generative View of Multiple-Choice QA:
○ Data Generation: Test designer creates a probabilistic distribution over correct answers
○ This test designer can be regarded as a probabilistic generative model

● Proposition: Probabilistic generative models are inherently well-calibrated
○ Since these models generate the positions of correct answers according to their probability 

distributions, the observed accuracy always equals the model’s confidence (i.e., its predicted 
probabilities).

● Target Probabilistic Generative Model:
○ Definition: Optimal solution maximizing accuracy under perfect calibration

● Preference-aligned Model lies in the Calibratable Regime

CFT can restore calibration without sacrificing LLM performance

● Overly fine-tune models,, they shift into the non-calibratable regime

RCFT navigate the trade-off between ECE and LLM performance

Take-away Messages

Github: https://github.com/PennShenLab/RestoreLLMCalibration
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