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Preference Alignment leads to Poor Generalization (GPT-4 technical Report)
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e Calibration: A model is well-calibrated when its confidence matches its accuracy
e Calibration of LLMs: evaluated on a multiple-choice question and its

corresponding correct answer

Universal Issue across: Models, Alignment approaches

Classwise Calibration Curve
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Figure 1. Calibration performance comparison between DPO and our approach on Llama3.1-8B-Tulu (a DPO-aligned version of Llama-
3.1 (Touvron et al., 2023)). Left: Model calibration plots after DPO alignment, showing significant overconfidence. Middle: Calibration
plots after applying our fine-tuning approach, demonstrating improved calibration. Right: The evolution of confidence ECE and classwise
ECE across different stages (pre-trained, SFT, DPO, and our method) shows how our approach effectively restores calibration errors.

Why Good Calibration is Important?

e Blindly trusting ML model predictions can be fatal in high-

stakes environ

ments

e Despite high accuracy (e.g., 95%), models cannot identify
which predictions are incorrect

e Assessing confidence for individual predictions is essential, () () () () () ()

not just accuracy rates
e In medical diagnostics and other high-risk scenarios,
neglecting prediction confidence can lead to severe

consequences

e Understanding and quantifying prediction uncertainty is
crucial for responsible implementation

e Modern models tend to be overconfident in their predictions

[1,2], which must be addressed in model design

Calibration Definitions

Definition 3.1 (Classwise Calibration). A probabilistic clas- Definition 3.2 (Confidence Calibration). A probabilistic
sifier p : X — Ay is classwise-calibrated, if for any class j classifier p : X — A}, is confidence-calibrated, if for any

and any predicted probability g; for this class:

P(y = jlp;(z) = ¢;) = ¢;-
Classwise-ECE (cw-ECE) is defined as:
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P(y = argmax p(z)| max p(z) = c) = c.
Confidence-ECE (conf-ECE) is defined as:

J=1

k
1 - B -
Ep(z) - E |IP’(y = arg max p(z)| max p(x)) — max p(:z:)|

Key Research Questions

1. Why does preference alignment affect calibration?
2. How can we restore calibration while maintaining the benefits of alignment?

Key Finding - Preference Collapse

e Preference Collapse Phenomenon:
o Definition: Alighed models excessively favor certain responses over others
o Results: Preference ratio exceeding human preference proportions
o T(y_w|x)/(m(y_w|x) +(y_I |x)) > P(y_w>y_l]|x)
e Multiple-Choice Generalization:
o Collapse appears with strong preference for one option (A/B/C/D)
o Leads to high confidence regardless of correctness
e Empirical Evidence:
o Observed across Llama3.1, Vicuna, Olmo2, and Mistral models which will be demonstrated
in the following experimental results

Theoretical Framework - Probabilistic Generative Model

e Generative View of Multiple-Choice QA:
o Data Generation: Test designer creates a probabilistic distribution over correct answers
o This test designer can be regarded as a probabilistic generative model
e Proposition: Probabilistic generative models are inherently well-calibrated
o Since these models generate the positions of correct answers according to their probability
distributions, the observed accuracy always equals the model's confidence (i.e., its predicted
probabilities).
e Target Probabilistic Generative Model.:
o Definition: Optimal solution maximizing accuracy under perfect calibration

Calibratable Regime v.s.Non Calibratable Regime
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e Calibration Regime:
ECE can reach zero without sacrificing
accuracy (or broadly LLM Performance )
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e Non-Calibration Regime:
Fundamental trade-off between ECE and
accuracy (or broadly LLM Performance )

Value of Calibration Error
i

0.50
Accuracy

0.25

(R)CFT: An EM-based Algorithm

Algorithm 1 (Regularized) Calibration-Aware FT

o SFT Loss: | Require: Number of epochs L, Number of bins M;
Questioning Comprehension Initialize model 7y by the alligned LLM:s;
Accuracy for[ =0to Ldo

Instruction Following E-Step: // Use max confidence to stratify samples

Lsrr, = — log w(y;|x;). for:=1:ndo
form=1: Mdo
e SFT2 Loss: if max conf,, (z;) € (7, ], then

Further Question understanding |
end

zi = m; Il z; is defined as the latent variable

end

Lsrr, = —|log7(y|z)

end

M-Step: // Calibrate model towards accuracy
form=1:Mdo

Sm — {(mif:y%)‘zt — m:é’ — 11 SO ?n};

O = It‘—?l_ml 2 (z.y)es,, 1(argmax confr, (z) = y);

T
- Zlog m(zt|ztt, .., ml)]

e ECEloss:
Calibration controlling

end
Update p(z;) by Equation (6),i =1,...,n;
T4+1 = % 2?21 min, [LSFT + )\EECE(P(%):‘ ?Tz(il?i))]E

Lrce = D(p(z), confr(z)),
end

Experiments

Table 2. Performance comparison among DPO/RLHF, Temperature Scaling, Label Smoothing, CFT, and RCFT across four models
(Llama3.1-8B-Tulu, Vicuna-7B, Olmo2-7B, and Mistral-7B) in in-domain and out-domain scenarios. Best results in each metric block
are bold. Blue highlights indicate superior in-domain conf-ECE of our CFT while red highlights denote best in-domain accuracy of our
RCFT. “/”/1” means the smaller/larger the better. “-”” means the results of Temp. Scale. are the same as the original DPO/RLHF version.

conf-ECE | cw-ECE | Accuracy 1
Mogel Method In-Domain  Out-Domain | In-Domain Out-Domain | In-Domain O:t-Domain
D DPO 0.1953 01212 0.0953 0.0650 0.6228 0.7810
«s = | Temp. Scale. 0.1126 0.0679 0.0336 0.0514 - -
g F-.“ Label Smooth. 0.1898 0.1009 0.0692 0.0639 0.6372 0.7116
-‘-3' = CFT(Ours) 0.0239 0.0688 0.0582 0.0375 0.6410 0.8000
RCFT(Ours) 0.0897 0.0810 0.0771 0.0526 0.8341 0.7991
o RLHF 0.1422 0.0852 0.0979 0.0560 0.4344 0.5233
‘; Temp. Scale. 0.0598 0.0224 0.0488 0.0484 - .
= Label Smooth. 0.1221 0.0823 0.0517 0.0544 0.4517 0.5767
§ CFT(Ours) 0.0379 0.0331 0.0583 0.0491 0.4481 0.6172
RCFT(Ours) 0.0474 0.0672 0.0459 0.0530 0.6015 0.6035
o DPO 0.1555 0.1325 0.0873 0.1331 0.6210 0.6635
E Temp. Scale. 0.0665 0.1160 0.0355 0.1196 - -
¢E> Label Smooth. 0.1010 0.0499 0.0791 0.1298 0.6808 0.6431
5 CFT(Ours) 0.0544 0.0225 0.0804 0.0637 0.6606 0.7085
RCFT(Ours) 0.0989 0.0781 0.0806 0.0707 0.8510 0.7099
- DPO 0.2010 0.1318 0.0909 0.1103 0.6331 0.7567
% Temp. Scale. 0.0802 0.0991 0.0399 0.0909 - -
= Label Smooth. 0.1874 0.1121 0.0900 0.0990 0.6479 0.6997
§ CFT(Ours) 0.0651 0.0424 0.0712 0.0614 0.6514 0.7863
RCFT(Ours) 0.0979 0.0731 0.0877 0.0739 0.8297 0.7768

Table 3. Win rate comparisons among DPO/RLHF (DPO used in Table 3), CFT and RCFT across four models (Llama3.1-8B-Tulu,
Vicuna-7B, Olmo2-7B and Mistral-7B) on three datasets (AlpacaEval, Arena-Hard and Ultrafeedback). The best performance for each
dataset is in bold. The competitive performance indicates that our methods can preserve the alignment performance.

Model AlpacaEval (vs DPO) AlpacaEval Arena-Hard Ultrafeedback
CFT vs DPO RCFT vs DPO | DPO CFT RCFT |DPO CFT RCFT| DPO CFT RCFT
Llama-3.1-8B-Tulu | 51.68 vs 48.32 46.83 vs 53.16 | 21.4 22.6 19.6 | 446 450 43.6 |0.7295 0.7460 0.7118
Vicuna-7B 46.46 vs 53.54 50.43 vs49.57|2.60 2.60 3.60 | 1.00 1.00 1.00 [0.2271 0.2279 0.2257
Olmo2-7B 62.48 vs 37.52 46.12vs53.88|24.2 229 23.1 | 194 19.2 20.2 [0.7493 0.7588 0.7517
Mistral-7B 46.96 vs 53.04 49.81 vs 50.19|26.0 26.8 252 |18.9 183 18.0 [0.7066 0.7124 0.7221
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Figure 5. Calibration Plots of (a, €) DPO, (b, f) Temperature Scaling (TS), (c. g) our CFT, (d, h) our RCFT on Llama-3.1-8B-Tulu. (a-d)
are the classwise calibration curve and (e-h) are the confidence calibration curve. Each panel plots the model’s predicted probabilities
(1.e., confidence) on the x-axis against the observed accuracy (fraction correct) on the y-axis, binned into ten groups. The diagonal line
in each panel represents perfect calibration. The depth of the color indicates the sample density in that column. DPO has the worst
calibration performance. Other three methods improve the calibration performance where our CFT has the lowest con-ECE (shown in
the parenthesis). The figures of conf-ECE (e-h) omit the first two bins because the model selects an answer with the largest predicted
probability which is always larger than 0.25 in the four options prediction task (so no samples exist below that threshold).

Take-away Messages

e Preference-aligned Model lies in the Calibratable Regime
CFT can restore calibration without sacrificing LLM performance

e Overly fine-tune models,, they shift into the non-calibratable regime
RCFT navigate the trade-off between ECE and LLM performance

Github: https://github.com/PennShenLab/RestoreLLMCalibration
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