

# Graph Attention is Not Always Beneficial:

# A Theoretical Analysis of Graph Attention Mechanisms via Contextual Stochastic Block Models (CSBMs)

Zhongtian Ma, Qiaosheng Zhang\*, Bocheng Zhou, Yexin Zhang, Shuyue Hu, Zhen Wang\* Contact US! mazhongtian@mail.nwpu.edu.cn, w-zhen@nwpu.edu.cn, zhangqiaosheng@pjlab.org.cn







**OpenReview** 

#### WeChat

## Motivation

- Despite the growing popularity of graph attention mechanisms (GAT), their theoretical understanding remains limited.
- Understand when and why graph attention mechanism works.

# ✓ Why CSBM?

- CSBM combines SBM and GMM to generate realistic graph structures and node features, ideal for both empirical and theoretical studies.
- In CSBM, nodes are split into several communities. Intra-community edges appear with probability p, inter-community edges with q; node features in each community are drawn from a distinct Gaussian distribution.



# ✓ Two types of noises

- We define two types of noise: **feature noise** and structure noise, as shown above.
- In CSBMs:  $\mathcal{F}_{noise} = \frac{p+q}{p-q}$ ,  $\mathcal{S}_{noise} = SNR^{-1} = \frac{\sigma}{\mu}$ .
- We study node classification task with perfect node classification(i.e. exact recovery) as the metric, and show that feature and structure noise are key to the effectiveness of graph attention.

## ✓ A simplified graph attention mechanism:

For a node i and its neighbor j, with  $X_i$  and  $X_j$ representing their respective features, a simplified graph attention mechanism used in this paper is defined as:

$$\Psi(X_i,X_j) \triangleq \begin{cases} t, & if \ X_i \cdot X_j \geq 0, \\ -t, & if \ X_i \cdot X_j < 0. \end{cases}$$

t > 0 is referred to as the attention intensity.

# Theoretical and Experimental Results

The regimes that GAT works and fails.

### **Theorem 2 and Corollary 1:**

Graph attention mechanism helps when

$$\mathcal{F}_{noise} = o(\frac{1}{\sqrt{\log n}}) \text{ and } \mathcal{S}_{noise} = \omega(1);$$

Graph attention mechanism does not help when  $\mathcal{F}_{noise} = \omega(1)$  and  $\mathcal{S}_{noise} = O(1)$ .

### Insight:

When structure noise dominates ( $S_{noise} \gg \mathcal{F}_{noise}$ ), graph attention mechanism is effective; when feature noise dominates ( $\mathcal{F}_{noise} \gg \mathcal{S}_{noise}$ ), GAT fails to work.

## Validation Experiments on Synthetic Dataset



✓ The impact on over-smoothing problem.

#### Theorem 3:

Assume that  $SNR = \omega(\sqrt{\log n})$ . The graph convolutional networks suffer from over-smoothing. However, when  $t = \omega(\sqrt{\log n})$ , networks with graph attention mechanism can prevent this over smoothing problem.

### **Insight:**

In regimes where GAT works, with sufficiently strong attention intensity, GAT can solve the oversmoothing problem.

### Validation Experiments on Synthetic Dataset



- $\triangleright$  As t increases,  $\gamma$  stops decaying exponentially with depth l, indicating the alleviation of oversmoothing problem.
- ✓ A new upper bound of exact recovery.

#### Theorem 4:

When  $SNR = \omega(\frac{\sqrt{\log n}}{\sqrt[3]{n}})$ , there exists a multi-layer GAT capable of achieving perfect node classification.

### Insight:

- We provide the first upper bound for achieving exact recovery with multi-layer GAT networks on CSBM.
- Our result improves the bound from SNR = $\omega(\sqrt{\log n})$  (in [1]) to  $\omega(\frac{\sqrt{\log n}}{\sqrt[3]{n}})$ , highlighting the benefit of using multiple layers in GAT.

[1] Fountoulakis K, et al. Graph attention retrospective. JMLR 2023.