

Graph Attention is Not Always Beneficial:

A Theoretical Analysis of Graph Attention Mechanisms via Contextual Stochastic Block Models (CSBMs)

Zhongtian Ma, Qiaosheng Zhang*, Bocheng Zhou, Yexin Zhang, Shuyue Hu, Zhen Wang* Contact US! mazhongtian@mail.nwpu.edu.cn, w-zhen@nwpu.edu.cn, zhangqiaosheng@pjlab.org.cn

OpenReview

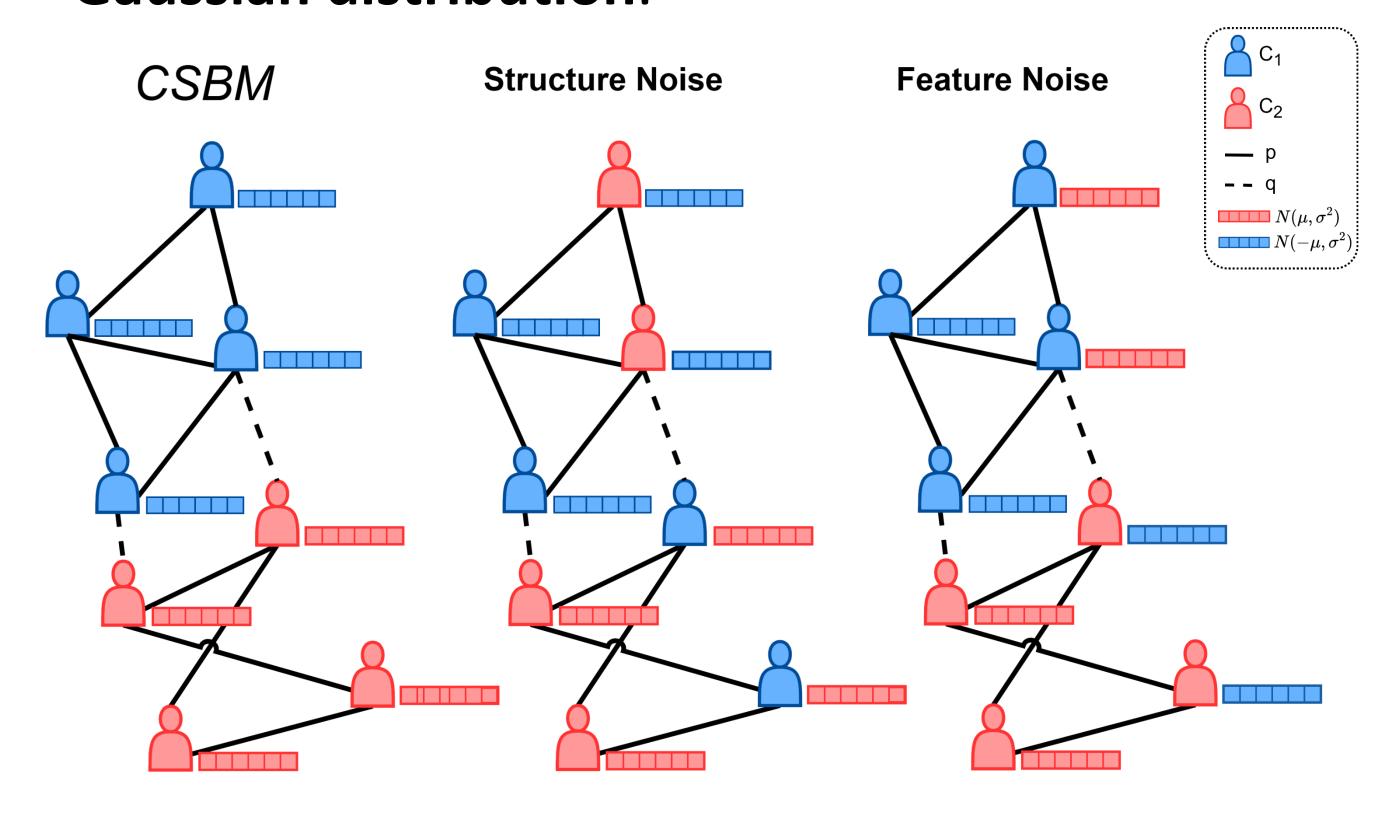
WeChat

Motivation

- Despite the growing popularity of graph attention mechanisms (GAT), their theoretical understanding remains limited.
- Understand when and why graph attention mechanism works.

✓ Why CSBM?

- CSBM combines SBM and GMM to generate realistic graph structures and node features, ideal for both empirical and theoretical studies.
- In CSBM, nodes are split into several communities. Intra-community edges appear with probability p, inter-community edges with q; node features in each community are drawn from a distinct Gaussian distribution.



✓ Two types of noises

- We define two types of noise: **feature noise** and structure noise, as shown above.
- In CSBMs: $\mathcal{F}_{noise} = \frac{p+q}{p-q}$, $\mathcal{S}_{noise} = SNR^{-1} = \frac{\sigma}{\mu}$.
- We study node classification task with perfect node classification(i.e. exact recovery) as the metric, and show that feature and structure noise are key to the effectiveness of graph attention.

✓ A simplified graph attention mechanism:

For a node i and its neighbor j, with X_i and X_j representing their respective features, a simplified graph attention mechanism used in this paper is defined as:

$$\Psi(X_i,X_j) \triangleq \begin{cases} t, & if \ X_i \cdot X_j \geq 0, \\ -t, & if \ X_i \cdot X_j < 0. \end{cases}$$

t > 0 is referred to as the attention intensity.

Theoretical and Experimental Results

The regimes that GAT works and fails.

Theorem 2 and Corollary 1:

Graph attention mechanism helps when

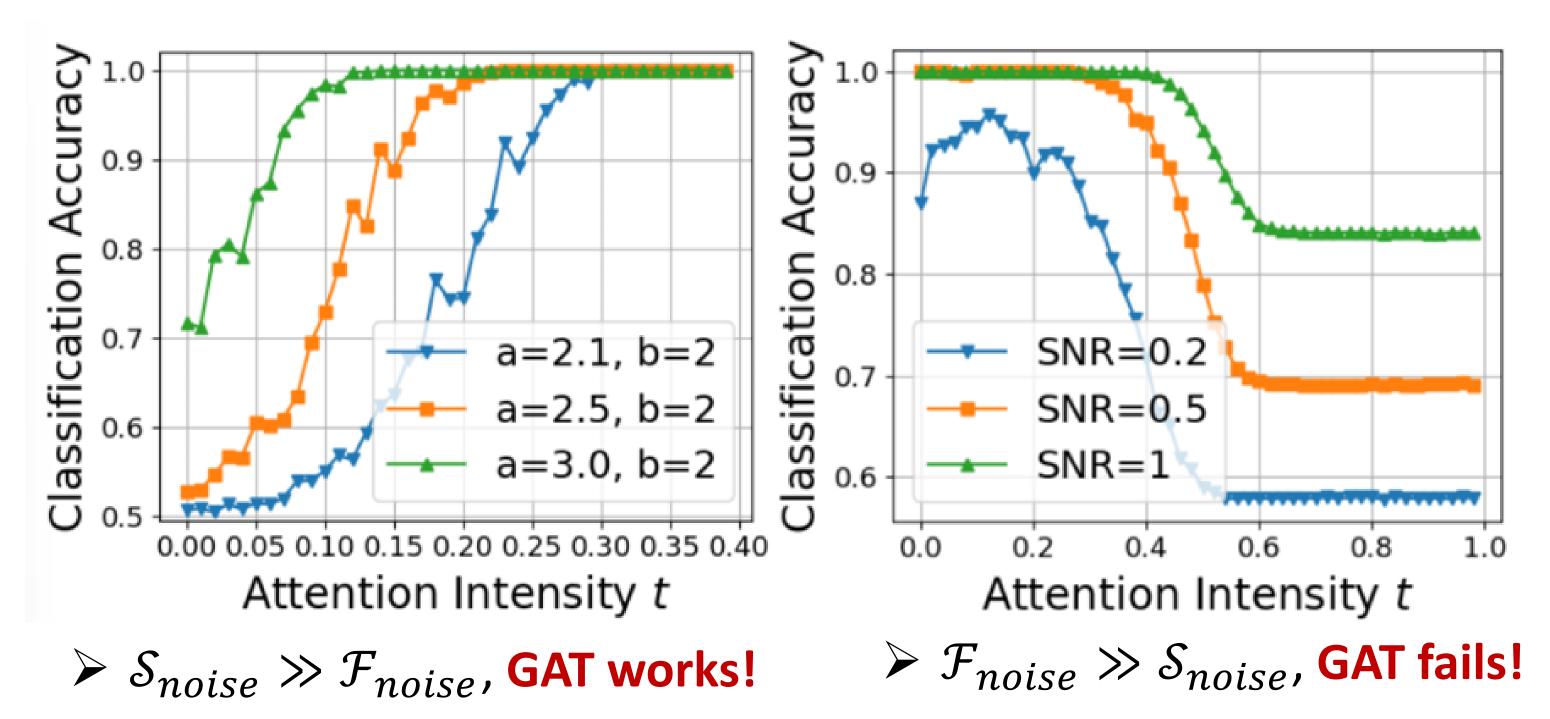
$$\mathcal{F}_{noise} = o(\frac{1}{\sqrt{\log n}}) \text{ and } \mathcal{S}_{noise} = \omega(1);$$

Graph attention mechanism does not help when $\mathcal{F}_{noise} = \omega(1)$ and $\mathcal{S}_{noise} = O(1)$.

Insight:

When structure noise dominates ($S_{noise} \gg \mathcal{F}_{noise}$), graph attention mechanism is effective; when feature noise dominates ($\mathcal{F}_{noise} \gg \mathcal{S}_{noise}$), GAT fails to work.

Validation Experiments on Synthetic Dataset



✓ The impact on over-smoothing problem.

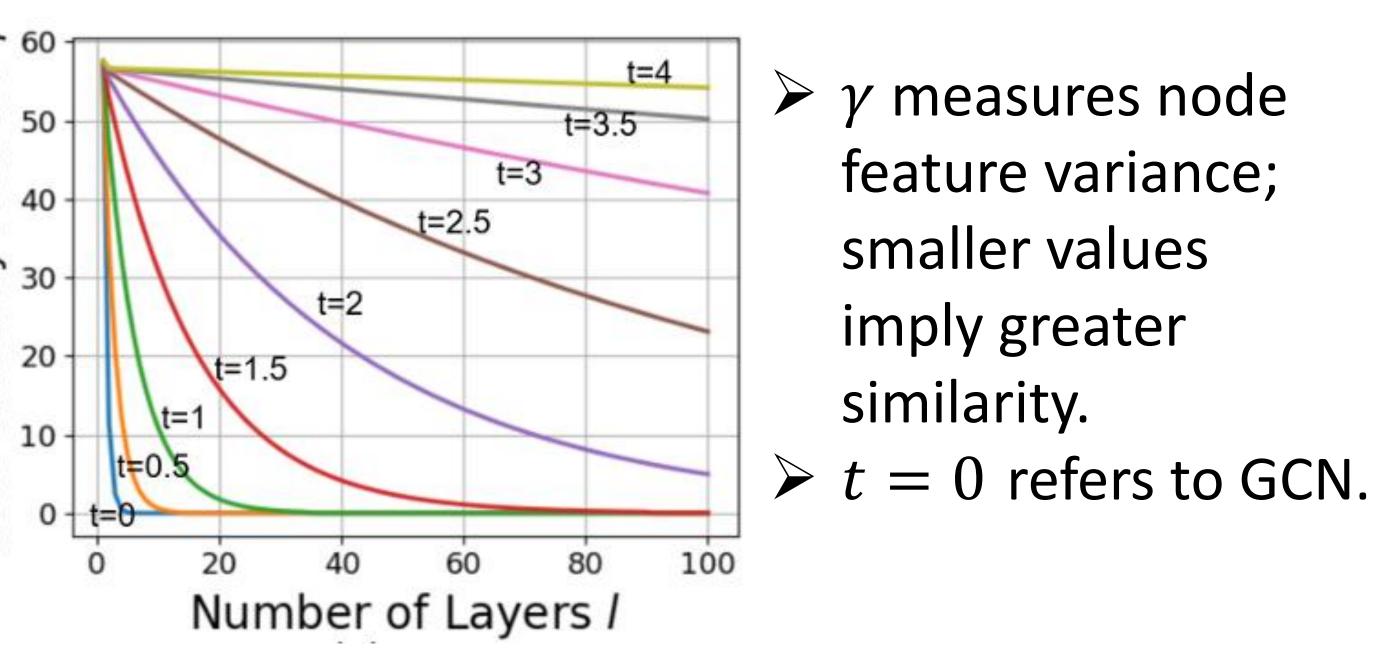
Theorem 3:

Assume that $SNR = \omega(\sqrt{\log n})$. The graph convolutional networks suffer from over-smoothing. However, when $t = \omega(\sqrt{\log n})$, networks with graph attention mechanism can prevent this over smoothing problem.

Insight:

In regimes where GAT works, with sufficiently strong attention intensity, GAT can solve the oversmoothing problem.

Validation Experiments on Synthetic Dataset



- \triangleright As t increases, γ stops decaying exponentially with depth l, indicating the alleviation of oversmoothing problem.
- ✓ A new upper bound of exact recovery.

Theorem 4:

When $SNR = \omega(\frac{\sqrt{\log n}}{\sqrt[3]{n}})$, there exists a multi-layer GAT capable of achieving perfect node classification.

Insight:

- We provide the first upper bound for achieving exact recovery with multi-layer GAT networks on CSBM.
- Our result improves the bound from SNR = $\omega(\sqrt{\log n})$ (in [1]) to $\omega(\frac{\sqrt{\log n}}{\sqrt[3]{n}})$, highlighting the benefit of using multiple layers in GAT.

[1] Fountoulakis K, et al. Graph attention retrospective. JMLR 2023.