SDP-CROWN: Efficient Bound Propagation for Neural Network Verification with Tightness of Semidefinite Programming

Hong-Ming Chiu¹, Hao Chen¹, Huan Zhang¹, Richard Y. Zhang¹

¹ ECE Department, University of Illinois at Urbana–Champaign.

Neural network verification

- Neural network (NN) verification aims to guarantee consistent model behavior in the presence of small perturbations to the input.
- Bound propagation is one of the leading methods for NN verification because it is highly scalable.
 - For elementwise perturbations, where each neuron is perturbed independently, bound propagation works remarkably well.
 - However, for ℓ_2 -norm perturbations, which introduce inter-neuron coupling, bound propagation becomes loose and overly conservative.

Bound propagation

Neural network: $f(x) = -ReLU(x_1) - ReLU(x_2)$.

• Elementwise perturbations: $-1 \le x_1 \le 1$ and $-1 \le x_2 \le 1$.

Why does bound propagation fail?

Neural network: $f(x) = -ReLU(x_1) - ReLU(x_2)$.

• ℓ_2 -norm perturbations: $x_1^2 + x_2^2 \le 1$.

Our method: SDP-CROWN

Neural network: $f(x) = -ReLU(x_1) - ReLU(x_2)$

• ℓ_2 -norm perturbations: $x_1^2 + x_2^2 \le 1$.

Bound propagation

Model inter-neuron coupling by optimizing a scalar variable per layer

SDP-CROWN

Results summary

- Significantly tighter than existing bound propagation methods for certifying ℓ_2 adversaries.
- Enjoying the same level of scalability as bound propagation methods.

For more details, please talk a look at our paper!

Thank you for your attention!