

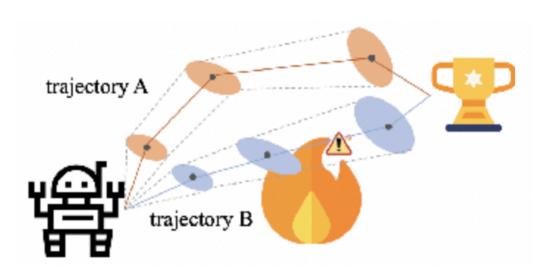
Online Learning in risk-sensitive constrained MDP

Arnob Ghosh, Assistant Professor at NJIT

Equal Contribution from Mehrdad Moharrami, Assistant Professor at University of Iowa

Decisions in Complex System

- Some Examples:
 - Safe Autonomous vehicle: Reach destination while maintaining safety;
 - Safe Robot navigation: Reach the goal state with minimum steps while avoiding obstacles.
 - Finance: Maximize return while ensuring the portfolio balance is above a certain threshold.



Need to satisfy constraints

Why risk-neutrality is not enough?

- Existing works model as constrained MDP (CMDP): $\{S,A,H,P,r,g\}$ $\max_{r,1} V_{r,1}^{\pi}(s)$, subject to $V_{g,1}^{\pi}(s) \geq B$ $V_{r,1}^{\pi} \colon \mathbb{E}_{\pi}[\sum_{h} r_h(s_h,a_h) \, | \, s_1 = s]$, Expected cumulative Reward,
- $V_{g,1}^{\pi}$: $\mathbb{E}_{\pi}[\sum_{h} g_h(s_h, a_h) \, | \, s_1 = s]$ Expected cumulative utility
- Markovian Optimal Policy:

Common way to achieve a policy, considering Lagrangian: $\min_{\lambda} \max_{\pi} V_{r,1}^{\pi}(s_0) + \lambda (V_{g,1}^{\pi}(s_0) - B)$

- For a given λ , simply solve a RL problem with reward $r + \lambda g$. Tune the dual-variable then. Stong duality exists if Slater's condition holds.
- However:
 - Humans are risk-averse: Natural to consider risk-averse constraints.
 - For real-life implementation, needs to avoid high-cost (or, low utility) events even when they are rare as they can be catastrophic (e.g, autonomous driving, navigating after natural disaster).

Risk-Constrained MDP

- We consider a risk-constrained MDP.
- $\max_{\pi} V_r^{\pi}(s), \quad \text{subject to } V_{g,1}^{\pi}(s) \geq B,$
- Entropic Risk Measure: $V_{g,1}^{\pi}(s) = \frac{1}{\alpha} \log \left[\mathbb{E}_{\pi} e^{\alpha \sum_{h=1}^{H} g_h(s_h, a_h)} \, | \, s_1 = s \right]$, Risk-aversion $\alpha < 0$:

Key Question: How do you solve the problem?
In the online learning—> Can you minimize Regret while being close to feasibility?

- Challenges:
 - Our result: Markovian Policy on the original state-space is no-longer optimal.
 - The value function is not linear in state-action occupancy measure—> Primal-Dual does not work.
 - Stong Duality may no longer hold.

Our Approach

• Consider Optimized Certainty equivalence (OCE) Representation

$$OCE_{u,\pi}(s) = \sup_{\tau} \{\tau + \mathbb{E}_{\pi}u(\sum_{h} g_{h}(s_{h}, a_{h}) - \tau)\},$$

$$u(t) = \frac{1}{\alpha}(e^{\alpha t} - 1)$$

- For $\alpha < 0$, $OCE_{u,\pi}(s) = V_{g,1}^{\pi}(s)$.
- Augment the state-space $c_h = \tau \sum_{h'=1}^{h-1} g_h(s_h, a_h), \, \tau ->$ initial budget.
- Consider Markovian policy with respect to the augmented-space (s_h, c_h) .
- $V_{g,1}^{\pi}(s,\tau)$: only depends on the last-state value, $c_{H+1} = \tau \sum_{h=1}^{H} g_h(s_h,a_h), \ V_{g,1}^{\pi}(s_1,\tau) = u(-c_{H+1}).$

Augmented Risk-constrained MDP

- $\max_{\pi} V_{r,1}^{\pi}(s,\hat{\tau})$, subject to $\hat{\tau} = \arg\max\{\tau + V_{g,1}^{\pi}(s,\tau)\}, V_{g,1}(s,\hat{\tau}) \ge B$.
- How do you solve it? $\min_{\lambda} \max_{\tau} \max_{\pi} V^{\pi}_{r,1}(s,\tau) + \lambda(\tau + V^{\pi}_{g,1}(s,\tau) B),$
- Challenge: Continuous augmented state-space as c_h is continuous, problem is not convex in τ .
 - Discretize the space over τ (initial budget) and available budget c_h , and iterate over all possible values of τ to find the maximum.
- How do you update the dual-variable?
 - Gradient-descent: $\lambda \leftarrow \max\{\min\{\lambda + \eta(B V_{g,1}^{\pi}(s,\tau)), \xi\}, 0\}$

Results

• Assumption: There is a Markovian optimal policy on the augmented state-space.

• Regret
$$(K) = \sum_{k=1}^K (V_{r,1}^{\pi^*}(s, \tau^*) - V_{r,1}^{\pi_k}(s, \tau_k))$$
, Violation $(K) = \sum_{k=1}^K (B - \max_{\tau} (\tau + V_{g,1}^{\pi_k}(s, \tau)))$.

With Probability
$$1-\delta$$
, our proposed Algorithm achieves
$$\operatorname{Regret}(K) = \tilde{\mathcal{O}}\big(V_{g,max}K^{3/4} + \sqrt{H^4S^2A\log(1/\delta)K^{3/4}}\big),$$

$$\operatorname{Violation}(K) = \tilde{\mathcal{O}}\big(V_{g,max}K^{3/4}\sqrt{H^3S^2A\log(1/\delta)}\big)$$

- First such result for risk-constrained MDP.
- Regret and Violation bounds are $\tilde{\mathcal{O}}(K^{3/4})$, worse than the CMDP $(\tilde{\mathcal{O}}(K^{1/2}))$.
 - Open Question: Can we improve it?

$$V_{g,max} = \frac{1}{|\alpha|} \exp(|\alpha|H)$$

Simulation Environment

5×5 Grid World

Table 2. Reward matrix r(i, j) for state (i, j)

		(/ 0 /		(/ 0 /	
Row \ Col	0	1	2	3	4
0	$\begin{array}{ c c } 0.0 \\ 0.5 \\ 0.1 \\ 0.1 \\ 0.1 \\ \end{array}$	0.1	0.2	0.2	0.1
1	0.5	0.1	1.5	0.5	0.3
2	0.1	0.1	0.4	0.3	0.2
3	0.1	0.1	0.3	0.1	0.6
4	0.1	0.2	0.3	0.1	0.0

Table 3. Utility matrix u(i, j) for state (i, j).

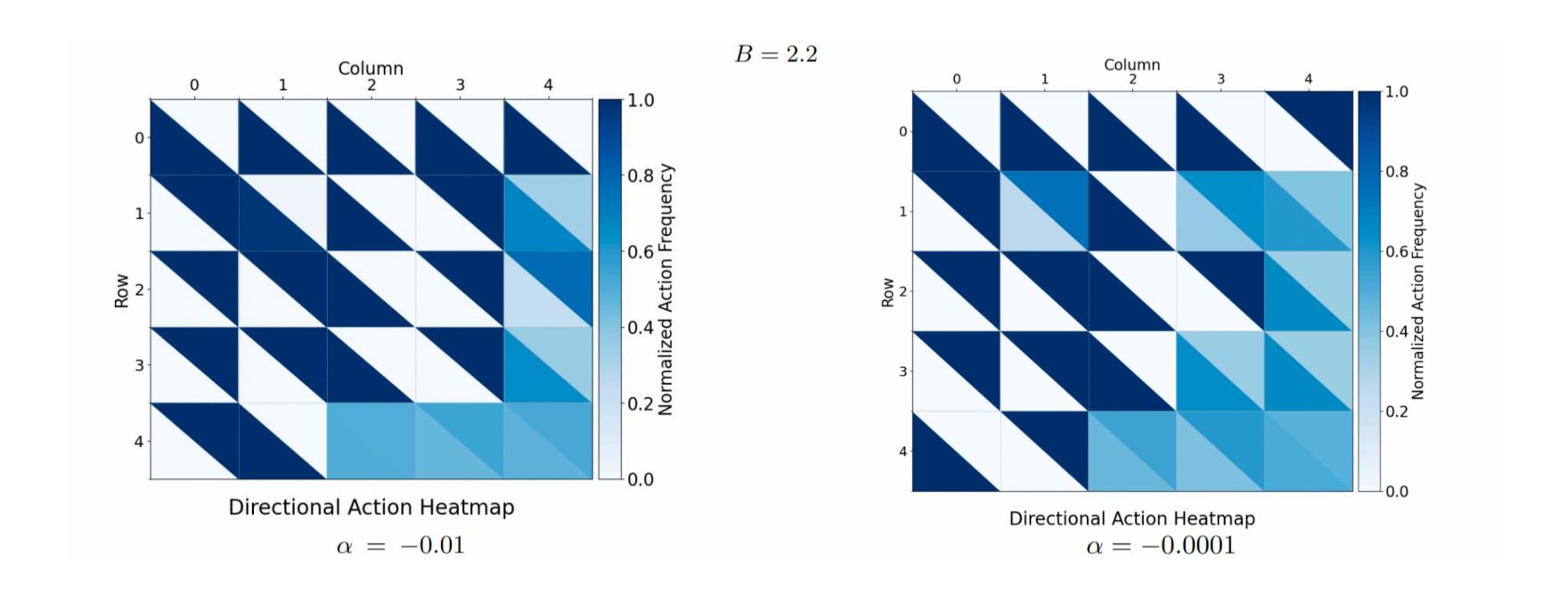
Row \ Col	0	1	2	3	4
0	$\begin{array}{ c c } 0.1 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ \end{array}$	0.1	0.2	0.1	0.1
1	0.4	0.2	0.1	0.0	0.0
2	0.3	0.4	1.0	0.0	0.1
3	0.2	0.5	0.4	0.2	0.1
4	0.1	0.1	0.4	0.2	0.0

Table 4. Probability matrix p(i, j) representing the likelihood that the action taken in state (i, j) will occur.

Row \ Col	0	1	2	3	4
0	0.9	0.9	0.7	0.5	1.0
1	0.9	0.9	0.5	0.5	1.0
2	0.7	0.9	0.9	0.6	1.0
3	0.9	0.8	0.8	0.5	1.0
4	0.9 0.9 0.7 0.9 1.0	1.0	1.0	1.0	1.0

Simulation Results

• α , less negative—> closer to risk-neutrality, tends to take more riskier option to get a higher reward.



Summary and Open question

- Risk-constrained MDP is important for practical implementation of RL.
- However, we may not have Markovian optimal policy; can not apply the primal-dual algoritm.
- Augmented state-space and OCE representation can address those problems.

Open questions:

- Can we extend to other risk-measures?
- Can we achieve result for stricter violation metrics?