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Decisions in Complex System

• Some Examples:


• Safe Autonomous vehicle: Reach destination while  
maintaining safety; 


• Safe Robot navigation: Reach the goal state with  
minimum steps while avoiding obstacles.


• Finance: Maximize return while ensuring the portfolio 
balance is above a certain threshold.
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Need to satisfy constraints



Why risk-neutrality is not enough?
• Existing works model as constrained MDP (CMDP):  

 

: , Expected cumulative Reward, 

•  Expected cumulative utility


• Markovian Optimal Policy:  
Common way to achieve a policy, considering Lagrangian: 




• For a given , simply solve a RL problem with reward . Tune the dual-variable then. 
Stong duality exists if Slater’s condition holds.


• However:


• Humans are risk-averse: Natural to consider risk-averse constraints.


• For real-life implementation, needs to avoid high-cost (or, low utility) events even when they are rare as they can be 
catastrophic (e.g, autonomous driving, navigating after natural disaster).
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Risk-Constrained MDP
• We consider a risk-constrained MDP.


• ,


• Entropic Risk Measure: , Risk-aversion : 


• Challenges:


• Our result: Markovian Policy on the original state-space is no-longer optimal.


• The value function is not linear in state-action occupancy measure—> Primal-Dual does not 
work.


• Stong Duality may no longer hold.
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Key Question: How do you solve the problem? 
In the online learning—> Can you minimize Regret while being close to feasibility?



Our Approach
• Consider Optimized Certainty equivalence (OCE) Representation  

,


• 


• For , .


• Augment the state-space , —> initial budget.


• Consider Markovian policy with respect to the augmented-space .


• : only depends on the last-state value, , .
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Augmented Risk-constrained MDP
• .


• How do you solve it? 
,


• Challenge: Continuous augmented state-space as  is continuous, problem is not convex 
in .


• Discretize the space over  (initial budget) and available budget , and iterate over all 
possible values of  to find the maximum. 


• How do you update the dual-variable? 


• Gradient-descent: 
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Results
• Assumption: There is a Markovian optimal policy on the augmented state-space.


• , .


• First such result for risk-constrained MDP.


• Regret and Violation bounds are , worse than the CMDP ( ).


• Open Question: Can we improve it?


•
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With Probability , our proposed Algorithm achieves  

,


1 − δ
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Simulation Results

• , less negative—> closer to risk-neutrality, tends to take more riskier 
option to get a higher reward.


•  

α



Summary and Open question
• Risk-constrained MDP is important for practical implementation of RL.


• However, we may not have Markovian optimal policy; can not apply the 
primal-dual algoritm .


• Augmented state-space and OCE representation can address those 
problems.


• Open questions: 

• Can we extend to other risk-measures?


• Can we achieve result for stricter violation metrics?


