Riemannian Diffusion Adaptation for Distributed Optimization on Manifolds

Xiuheng Wang[†], Ricardo Borsoi*, Cédric Richard[†], Ali Sayed[‡]

*Université de Lorraine, CNRS, CRAN, France †Université Côte d'Azur, CNRS, OCA, France ‡École Polytechnique Fédérale de Lausanne, Switzerland

ICML 2025

Distributed optimization on manifolds

Multi-agent optimization problem seeking consensus on a Riemannian manifold:

$$\min_{\mathbf{w} \in \mathcal{M}} \sum_{k=1}^{K} J_k(\mathbf{w}), \quad J_k(\mathbf{w}) = \mathbb{E}_{\mathbf{x}_k} \{ Q(\mathbf{w}; \mathbf{x}_k) \}. \tag{1}$$

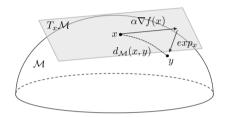
Riemannian manifold \mathcal{M} : curvature is induced by constraint, e.g., $\|\boldsymbol{w}\|=1$ for the sphere, or metric, e.g., $\langle \boldsymbol{w}_1, \boldsymbol{w}_2 \rangle_{\boldsymbol{\Sigma}} = \text{Tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{w}_1\boldsymbol{\Sigma}^{-1}\boldsymbol{w}_2)$ for the manifold of symmetric positive definite (SPD) matrices.

A wide range of applications can be written in the form of (1), including

- Principal component analysis (PCA);
- Gaussian mixture models (GMM);
- Low-rank matrix completion;
- Deep neural networks with orthogonal constraints.

This work focuses on fully intrinsic methods and thus can be applied to general manifolds.

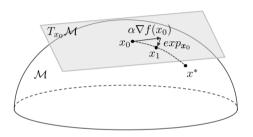
Riemannian optimization: main tools



A few important tools:

- Riemannian gradient: $\nabla f(x) \in T_x \mathcal{M}$;
- ullet exponential mapping: $\exp_x : T_x \mathcal{M} \to \mathcal{M}$ (maps a vector in the tangent space back to the manifold);
- ullet geodesic distance: $d_{\mathcal{M}}$ (length of the shortest path between two points on \mathcal{M}).

Riemannian optimization: R-SGD, basic structure



Considering a cost f(x), $x \in \mathcal{M}$ we proceed as¹:

- compute a stochastic approximation of $\nabla f(\mathbf{x})$ at \mathbf{x} ;
- ullet "take a step in the negative gradient direction" on ${\mathcal M}$ using the exponential mapping.

¹Silvere Bonnabel. "Stochastic gradient descent on Riemannian manifolds". In: IEEE Transactions on Automatic Control 58.9 (2013), pp. 2217–2229.

Riemannian Diffusion adaptation

To encourage consensus ($\mathbf{w}_k = w, \forall k$) on manifolds, we consider the geodesic distance-based consensus problem², i.e., minimization of the penalty:

$$P(\mathbf{w}) \triangleq \sum_{k=1}^{K} P_k(\mathbf{w}_k), \text{ where } P_k(\mathbf{w}_k) \triangleq \frac{1}{2} \sum_{\ell=1}^{K} c_{\ell k} d^2(\mathbf{w}_k, \mathbf{w}_\ell).$$
 (2)

This results in the following optimization problem with a constraint:

$$\min_{\boldsymbol{w} \in \mathcal{M}^K} J(\boldsymbol{w}) \qquad s.t. \quad P(\boldsymbol{w}) = 0, \tag{3}$$

where $J(\mathbf{w}) \triangleq \frac{1}{K} \sum_{k=1}^{K} J_k(\mathbf{w}_k)$.

 $^{^{2}} Roberto\ Tron\ et\ al.\ "Riemannian\ consensus\ for\ manifolds\ with\ bounded\ curvature".\ In:\ \textit{IEEE\ Transactions\ on\ Automatic\ Control\ 58.4\ (2012),\ pp.\ 921-934.}$

Riemannian Diffusion adaptation

We first apply an R-SGD to the risk J(w) and subsequently descend along the penalty P(w):

$$\phi_{k,t} = \exp_{\mathbf{w}_{k,t-1}} \left(-\mu \widehat{\nabla} \widehat{J}_k(\mathbf{w}_{k,t-1}) \right), \tag{4}$$

$$\mathbf{w}_{k,t} = \exp_{\phi_{k,t}} \left(-\alpha \nabla P_k(\phi_{k,t}) \right) = \exp_{\phi_{k,t}} \left(\alpha \sum_{\ell=1}^K c_{\ell k} \exp_{\phi_{k,t}}^{-1}(\phi_{\ell,t}) \right). \tag{5}$$

Adapt-then-combine scheme:

- ullet An adaptation step: each agent k uses its own data $oldsymbol{x}_{k,t-1}$ to update its solution $\phi_{k,t}$;
- A combination step: the intermediate estimates $\{\phi_{l,t}\}$ are combined, on the tangent space of $\phi_{k,t}$ to obtain the estimate $\mathbf{w}_{k,t}$.

Our algorithm reduces to the standard diffusion adaptation 3,4 when $\mathcal M$ is an Euclidean space.

³ Jianshu Chen et al. "Diffusion adaptation strategies for distributed optimization and learning over networks". In: *IEEE Transactions on Signal Processing* 60.8 (2012), pp. 4289–4305.

⁴Ali H Sayed et al. "Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior". In: *IEEE Signal Processing Magazine* 30.3 (2013), pp. 155–171.

Theoretical analysis

Rewrite (4) and (5) compactly as

$$\phi_t = \exp_{\boldsymbol{w}_{t-1}} \left(-\mu \widehat{\nabla} J(\boldsymbol{w}_{t-1}) \right), \tag{6}$$

$$\mathbf{w}_{t} = \exp_{\phi_{t}} \left(-\alpha \nabla P(\phi_{t}) \right). \tag{7}$$

Step (7) can be regarded as a one-step Riemannian optimization to approximate a global minimum of $P(\phi)$, belonging to the *consensus submanifold* \mathcal{A} , defined as

$$\mathcal{A} \triangleq \{ \phi \in \mathcal{M}^K \mid \phi_i = \phi_j, \, \forall i, j \}.$$
 (8)

The local update in (4) is performed with a constant step size, which plays an important role in continuous learning and adaptation scenarios^{5,6}.

⁵Ali H Sayed et al. "Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior". In: IEEE Signal Processing Magazine 30.3 (2013), pp. 155–171.

 $^{^6}$ Ali H Sayed. "Adaptive networks". In: *Proceedings of the IEEE* 102.4 (2014), pp. 460–497.

Network Agreement

Evolution of the penalty:

Lemma

Under some mild assumptions including geodesic smoothness, suppose $\alpha \in (0, h_{max}^{-1}]$. The sequence $\{P(\phi_t)\}_{t\geq 0}$ satisfies the following relation:

$$\mathbb{E}\{P(\phi_{t+1}) - P(\phi_t)\} \le -\frac{\alpha}{4} \mathbb{E} \|\nabla P(\phi_t)\|^2 + \frac{5\mu^2}{\alpha} G^2 + \frac{\mu^2}{\alpha} \sigma^2.$$
 (9)

Network Agreement

Approximately achieve consensus:

Theorem

Under some mild assumptions including geodesic convexity and smoothness, suppose $\alpha \in (0, h_{max}^{-1}]$. The sequence $\{P(\phi_t)\}_{t\geq 0}$ satisfies the following relation:

$$\mathbb{E}\{P(\phi_t)\} \le \frac{11\mu^2}{2\alpha\tau}G^2 + \frac{3\mu^2}{\alpha\tau}\sigma^2, \tag{10}$$

after sufficient iterations s_o , given by

$$s_o = \frac{2\log(\mu)}{\log(1-\tau)} + O(1) = O(\mu^{-1}), \tag{11}$$

where $\tau = \min\{\frac{1}{2C}, \alpha h_{min}\}$, the last equality holds for sufficiently small μ .

Network Agreement

Approximately achieve consensus:

This result establishes that after sufficient iterations $s_o = O(\mu^{-1})$, we have:

$$\mathbb{E}\{P(\phi_t)\} \le O(\mu^2), \tag{12}$$

or, from Markov's inequality:

$$\Pr\{P(\phi_t) \ge \mu\} \le O(\mu), \tag{13}$$

which means the local estimates in ϕ_t coalesce around $\phi_t^* \in \mathcal{A}$ (where $P(\phi_t^*) = 0$) with high probability.

Convergence

Evolution of the cost:

Lemma

Under some mild assumptions including geodesic smoothness, suppose $\mu \in (0, L^{-1}]$. The sequence $\{J(\mathbf{w}_t)\}_{t\geq 0}$ satisfies the following relation:

$$\mathbb{E}\{J(\boldsymbol{w}_{t+1}) - J(\boldsymbol{w}_t)\} \le -\frac{\mu}{4} \mathbb{E} \|\widehat{\nabla J}(\boldsymbol{w}_t)\|^2 + \frac{5\alpha^2}{\mu} \mathbb{E} \|\nabla P(\phi_{t+1})\|^2.$$
 (14)

Convergence

Design of a Lyapunov function:

To handle the manifold curvature, we design a Lyapunov function⁷as $\Delta'_t \triangleq J(\boldsymbol{w}'_t) - J(\boldsymbol{w}^*)$, we study the convergence of $\{\boldsymbol{w}_{s_o+1}, \cdots, \boldsymbol{w}_t\}$ by auxiliary variables $\{\boldsymbol{w}'_{s_o+1}, \cdots, \boldsymbol{w}'_t\}$:

$$\bullet \ \boldsymbol{w}_{s_o+1}' = \boldsymbol{w}_{s_o+1}$$

$$m{w}_{s+1}' = \exp_{m{w}_s'}\left(rac{1}{s-s_o+1}\exp_{m{w}_s'}^{-1}(m{w}_{s+1})
ight)$$
 for $s_o+1 \leq s \leq t-2$

$$\bullet \ \boldsymbol{w}_t' = \exp_{\boldsymbol{w}_{t-1}'} \left(\frac{2\zeta}{2\zeta + t - s_o - 1} \exp_{\boldsymbol{w}_{t-1}'}^{-1} (\boldsymbol{w}_t) \right)$$

For example, when $\mathcal{M} = \mathbb{R}^n$, the streaming average reduces to

•
$$\mathbf{w}'_{s_0+1} = \mathbf{w}_{s_0+1}$$

•
$$w'_{s+1} = w'_s + \frac{1}{s-s_o-1}(w'_s - w_{s+1})$$
 for $s_o + 1 < s \le t-2$

•
$$\mathbf{w}'_t = \mathbf{w}'_{t-1} + \frac{2\zeta}{2\zeta + t - s_2 - 1} (\mathbf{w}'_{t-1} - \mathbf{w}_t)$$

⁷ Hongyi Zhang et al. "First-order methods for geodesically convex optimization". In: Conference on Learning Theory. 2016, pp. 1617–1638.

Convergence

Non-asymptotic convergence:

Theorem

Under some mild assumptions including geodesic convexity and smoothness, suppose $\alpha \in (0, h_{max}^{-1}]$ and $\mu \in (0, L^{-1}]$. The sequence $\{J(\boldsymbol{w}_t')\}_{t \geq s_o + 1}$ satisfies the following relation:

$$\mathbb{E}\Delta_t' \leq \frac{\zeta L D^2 + (t - s_o) \left(\frac{231\zeta\alpha\mu}{2\tau} G^2 + \frac{63\zeta\alpha\mu}{\tau} \sigma^2\right)}{2\zeta + t - s_o - 1},\tag{15}$$

where $\Delta'_t = J(\mathbf{w}'_t) - J(\mathbf{w}^*)$.

Applications and experiment setups

We apply our strategy to two manifolds as examples:

- PCA: the Grassmann manifold \mathcal{G}_n^p ;
- GMM inference: the manifold of SPD matrices S_n^{++} .

Baselines:

- Distributed PCA: DRSGD⁸;
- Distributed GMM inference: ECGMM^{9,10}.

⁸Shixiang Chen et al. "Decentralized Riemannian gradient descent on the Stiefel manifold". In: *International Conference on Machine Learning*. PMLR. 2021, pp. 1594–1605.

⁹Angelia Nedic et al. "Constrained consensus and optimization in multi-agent networks". In: *IEEE Transactions on Automatic Control* 55.4 (2010), pp. 922–938.

¹⁰Xiangru Lian et al. "Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent". In: Advances in Neural Information Processing Systems 30 (2017).

Multi-agent system

We selected K = 20 agents, the weights in matrix C with Metropolis rule¹¹.

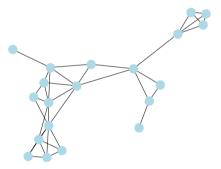


Figure: Graph topology.

¹¹Lin Xiao et al. "A space-time diffusion scheme for peer-to-peer least-squares estimation". In: *Proceedings of the 5th International Conference on Information Processing in Sensor Networks*, 2006, pp. 168–176.

Distributed PCA

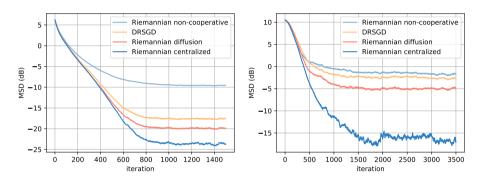


Figure: Illustration of MSD performance of the algorithms for distributed PCA on synthetic (left) and real (right) data.

Distributed GMM inference

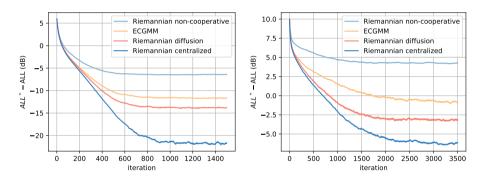


Figure: Illustration of ALL differences of the algorithms for distributed GMM inference on synthetic (left) and real (right) data.

Thanks for your attention!