Riemannian Diffusion Adaptation for Distributed Optimization on Manifolds

Xiuheng Wang[†], Ricardo Borsoi*, Cédric Richard[†], Ali Sayed[‡]

*Université de Lorraine, CNRS, CRAN, France †Université Côte d'Azur, CNRS, OCA, France ‡École Polytechnique Fédérale de Lausanne, Switzerland

ICML 2025

Distributed optimization on manifolds

Multi-agent optimization problem:

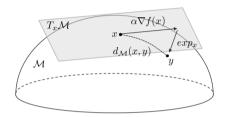
$$\min_{\mathbf{w} \in \mathcal{M}} \sum_{k=1}^{K} J_k(\mathbf{w}), \quad J_k(\mathbf{w}) = \mathbb{E}_{\mathbf{x}_k} \{ Q(\mathbf{w}; \mathbf{x}_k) \}. \tag{1}$$

A wide range of applications can be written in the form of (1), including

- principal component analysis (PCA);
- Gaussian mixture models (GMM);
- low-rank matrix completion;
- deep neural networks with orthogonal constraints.

This work focuses on fully intrinsic methods and thus can be applied to general manifolds.

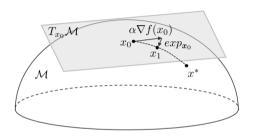
Riemannian optimization: main tools



A few important tools:

- Riemannian gradient: $\nabla f(x) \in T_x \mathcal{M}$;
- ullet exponential mapping: $\exp_x : T_x \mathcal{M} \to \mathcal{M}$ (maps a vector in the tangent space back to the manifold);
- ullet geodesic distance: $d_{\mathcal{M}}$ (length of the shortest path between two points on \mathcal{M}).

Riemannian optimization: R-SGD, basic structure



Considering a cost f(x), $x \in \mathcal{M}$ we proceed as¹:

- compute a stochastic approximation of $\nabla f(\mathbf{x})$ at \mathbf{x} ;
- ullet "take a step in the negative gradient direction" on ${\mathcal M}$ using the exponential mapping.

¹Silvere Bonnabel. "Stochastic gradient descent on Riemannian manifolds". In: IEEE Transactions on Automatic Control 58.9 (2013), pp. 2217–2229.

Riemannian Diffusion adaptation

One can encourage *consensus* ($\mathbf{w}_k = w, \forall k$) on manifolds with a penalty:

$$\min_{\boldsymbol{w} \in \mathcal{M}^K} J(\boldsymbol{w}) \qquad s.t. \quad P(\boldsymbol{w}) = 0, \tag{2}$$

where $J(\mathbf{w}) \triangleq \frac{1}{K} \sum_{k=1}^{K} J_k(\mathbf{w}_k)$ and $P(\mathbf{w}) \triangleq \frac{1}{2} \sum_{k=1}^{K} \sum_{\ell=1}^{K} c_{\ell k} d^2(\mathbf{w}_k, \mathbf{w}_\ell)$.

The proposed algorithm:

$$\phi_{k,t} = \exp_{\mathbf{w}_{k,t-1}} \left(-\mu \widehat{\nabla J}_k(\mathbf{w}_{k,t-1}) \right), \tag{3}$$

$$\mathbf{w}_{k,t} = \exp_{\phi_{k,t}} \left(\alpha \sum_{\ell=1}^{K} c_{\ell k} \exp_{\phi_{k,t}}^{-1} (\phi_{\ell,t}) \right). \tag{4}$$

A special case: our algorithm reduces to the standard diffusion adaptation^{2,3} when $\mathcal{M}=\mathbb{R}^n$.

² Jianshu Chen et al. "Diffusion adaptation strategies for distributed optimization and learning over networks". In: *IEEE Transactions on Signal Processing* 60.8 (2012), pp. 4289–4305.

³Ali H Sayed et al. "Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior". In: IEEE Signal Processing Magazine 30.3 (2013), pp. 155–171.

Network Agreement

Theorem

Under some mild assumptions including geodesic convexity and smoothness, suppose $\alpha \in (0, h_{max}^{-1}]$. The sequence $\{P(\phi_t)\}_{t\geq 0}$ satisfies the following relation:

$$\mathbb{E}\{P(\phi_t)\} \le \frac{11\mu^2}{2\alpha\tau}G^2 + \frac{3\mu^2}{\alpha\tau}\sigma^2, \tag{5}$$

after sufficient iterations s_o , given by

$$s_o = \frac{2\log(\mu)}{\log(1-\tau)} + O(1) = O(\mu^{-1}),$$
 (6)

where $\tau = \min\{\frac{1}{2C}, \alpha h_{min}\}$, the last equality holds for sufficiently small μ .

Non-asymptotic convergence

To handle the manifold curvature, we design a Lyapunov function⁴ of \boldsymbol{w}_t as $\Delta'_t \triangleq J(\boldsymbol{w}'_t) - J(\boldsymbol{w}^*)$, we study the convergence of $\{\boldsymbol{w}_{s_o+1}, \cdots, \boldsymbol{w}_t\}$ by auxiliary variables $\{\boldsymbol{w}'_{s_o+1}, \cdots, \boldsymbol{w}'_t\}$:

- $\bullet \ \boldsymbol{w}_{s_o+1}' = \boldsymbol{w}_{s_o+1}$
- $w'_{s+1} = \exp_{w'_s} \left(\frac{1}{s-s_o+1} \exp_{w'_s}^{-1} (w_{s+1}) \right)$ for $s_o+1 \leq s \leq t-2$
- $\bullet \ \boldsymbol{w}_t' = \exp_{\boldsymbol{w}_{t-1}'} \left(\frac{2\zeta}{2\zeta + t s_o 1} \exp_{\boldsymbol{w}_{t-1}'}^{-1} (\boldsymbol{w}_t) \right)$

For example, when $\mathcal{M} = \mathbb{R}^n$, the streaming average reduces to

- $\mathbf{w}'_{s_o+1} = \mathbf{w}_{s_o+1}$
- $w'_{s+1} = w'_s + \frac{1}{s-s_o-1}(w'_s w_{s+1})$ for $s_o + 1 < s \le t-2$
- $ullet m{w}_t' = m{w}_{t-1}' + rac{2\zeta}{2\zeta + t s_o 1} (m{w}_{t-1}' m{w}_t)$

⁴Hongyi Zhang et al. "First-order methods for geodesically convex optimization". In: Conference on Learning Theory. 2016, pp. 1617–1638.

Non-asymptotic convergence

Theorem

Under some mild assumptions including geodesic convexity and smoothness, suppose $\alpha \in (0, h_{max}^{-1}]$ and $\mu \in (0, L^{-1}]$. The sequence $\{J(\boldsymbol{w}_t')\}_{t \geq s_o + 1}$ satisfies the following relation:

$$\mathbb{E}\Delta_t' \leq \frac{\zeta L D^2 + (t - s_o) \left(\frac{231\zeta\alpha\mu}{2\tau} G^2 + \frac{63\zeta\alpha\mu}{\tau} \sigma^2\right)}{2\zeta + t - s_o - 1},\tag{7}$$

where
$$\Delta'_t = J(\mathbf{w}'_t) - J(\mathbf{w}^*)$$
.

Applications and experiment setups

We apply our strategy to two manifolds as examples:

- PCA: the Grassmann manifold \mathcal{G}_n^p ;
- GMM inference: the manifold of SPD matrices S_n^{++} .

Baselines:

- Distributed PCA: DRSGD⁵;
- Distributed GMM inference: ECGMM^{6,7}.

⁵Shixiang Chen et al. "Decentralized Riemannian gradient descent on the Stiefel manifold". In: *International Conference on Machine Learning*. PMLR. 2021, pp. 1594–1605.

⁶Angelia Nedic et al. "Constrained consensus and optimization in multi-agent networks". In: *IEEE Transactions on Automatic Control* 55.4 (2010), pp. 922–938.

⁷Xiangru Lian et al. "Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent". In: Advances in Neural Information Processing Systems 30 (2017).

Multi-agent system

We selected K = 20 agents, the weights in matrix **A** with Metropolis rule⁸.

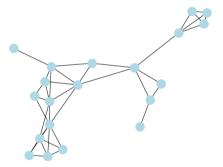


Figure: Graph topology.

⁸Lin Xiao et al. "A space-time diffusion scheme for peer-to-peer least-squares estimation". In: *Proceedings of the 5th International Conference on Information Processing in Sensor Networks*, 2006, pp. 168–176.

Distributed PCA

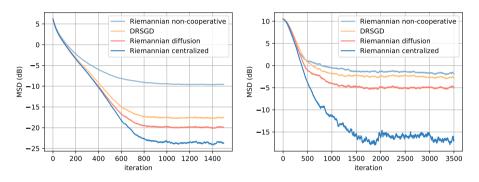


Figure: Illustration of MSD performance of the algorithms for distributed PCA on synthetic (left) and real (right) data.

Distributed GMM inference

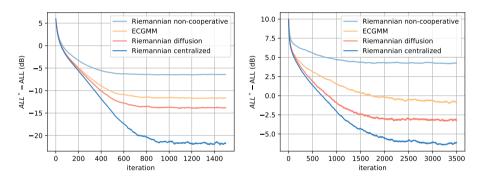


Figure: Illustration of ALL differences of the algorithms for distributed GMM inference on synthetic (left) and real (right) data.

 $Thanks \ for \ watching!$