
TL; DR: We introduce a simple theoretical model explaining 
the observed behavior of LLM performance on reasoning 
tasks with increasing number of inference attempts.

Overview

Check out our paper:
noam.levi@epfl.chNoam Levi

A Simple Model of Inference Scaling Laws

x = int(input()) …
Problem: Input 
a number from 

stdin and …

Step 1: Generate many candidate solutions. Step 2: Use a verifier to pick a final answer.

Problem 1 (coverage): Can we generate a correct 
solution?

Problem 2 (precision): Can we identify a correct 
solution from the generated samples?

Verifier
(e.g. unit tests, proof 

checkers, majority voting)

data = {} …

import requests …

LLM

x = int(input()) …

Brown et al., 2024

Models improve with more inference attempts

pass@k (aka Coverage) = the probability of at least one success in k trials 
averaged over the entire dataset of size n.

One shot weak 
models…

…Can become much 
better with repeated 
inference attempts!

An ansatz for an inference model that improves with 
repeated attempts

Interpretability and inference costs

We assume a simple construction: 
A memory module M memorizes a 
set of “solutions” up to a certain 
capacity. Then the inference 
module I infers from M with some 
error probability for each solution 
given by . pi

Bonus: Variational Autoencoder reconstruction 
experiment

Optimization by gradient flow dynamics yields a simple solution for : 

The losses admit a very simple form: 

Since  is a random vector, the meaningful quantities are the training Gram matrix 
eigenvalues, which follow the Marcenko Pastur (MP) distribution: 

The MP distribution can be used to approximate the empirical expectations by the 
distribution expectations: 

D(t)

D0

Diversity in “perceived difficulty” of tasks 
determines the inference scaling of a model

Left: Empirical pass@k for several LLMs on MATH questions, for varying k repeated inference attempts.       
Right: Probability distribution of inference failures required to match theory predictions to the empirical results.
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How and why does it work?
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Inference losses for different 
models and parameters

= 𝒜 × (1 −
Γ(β)Γ(k + α)

B(α, β)Γ(k + α + β) )
pass@k ≈ 𝒜 × (1 − ⟨pk⟩) = 𝒜 × (1 − ∫

1

0
dppk p−1+α(1 − p)−1+β

B(α, β) )

Key: all the information is in the distribution of . 
To construct the failure distribution,  we assume that different samples 
may have different inference complexity levels, incorporating some "easy" 
and some "difficult" samples with respect to the inference model.  

One way to model the different complexities is using the Beta distribution.  
We think of the failure probability across samples itself  as a random 
variable, drawn from 

 

Where  controls easy questions and  determines the hard tail.  

Result 1: analytical pass@k given by 

pi

p = pi

Beta(α, β; p) =
p−1+α(1 − p)−1+β

B(α, β)
α β

Result 2: analytical inference loss: 

ℒinference(k) ≡ 𝔼(Error in k trials) = 𝔼(𝒜 × pk) ≈ 𝒜 ×
Γ(β)Γ(k + α)

B(α, β)Γ(k + α + β)
≈

k→∞
𝒜 ×

Γ(β)k−β

B(α, β)

Power law decay for large k!

*Dashed curves indicate the theory given here, dotted curves are an alternative, dual theory described in the paper
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Inference cost for different parameter values

where  is the inference cost per token,  are the number of prompt 

and decode tokens, respectively, and  is the number of FLOPS per token.

Np, Nd

F

𝒞 × F = Np × F + Nd × k × F=

Under the following assumptions, the pass@k is given: Task: We train a VAE with a temperature 
parameter to reconstruct its training samples 
(FMNIST), with a failure threshold parameter . 

Result: The controlled reconstruction task 
obeys the same type of pass@k scaling, 
indicating some universality of the simple 
model. 

ε

M 

Memory module with capacity  

I 
Inference module with failure 

probability per sample  pi

Prompt i Answer Ii

This model can easily connect the measured pass@k curves with the unknown 
failure probability distribution of different models! 

Procedure: measure the pass@k, then define . The 
Laplace transform relates the “difficulty distribution” with the pass@k metric, as: 

  

f̃(k) = (𝒜 − pass@k)/𝒜

f̃(k) = ⟨pk⟩ = ∫
∞

0
dσe−σk e−ασ (1 − e−σ)−1+β

B(α, β)
= ∫

∞

0
dσe−σkf(σ) .

Cost of Compute: We can also relate our scaling laws to a “compute pass@k” 
with repeated inference attempts, given analytically by:

We relate attempts to compute cost through a simple formula:


