
TL; DR: We introduce a simple theoretical model explaining
the observed behavior of LLM performance on reasoning
tasks with increasing number of inference attempts.

Overview

Check out our paper:
noam.levi@epfl.chNoam Levi

A Simple Model of Inference Scaling Laws

x = int(input()) …
Problem: Input
a number from

stdin and …

Step 1: Generate many candidate solutions. Step 2: Use a verifier to pick a final answer.

Problem 1 (coverage): Can we generate a correct
solution?

Problem 2 (precision): Can we identify a correct
solution from the generated samples?

Verifier
(e.g. unit tests, proof

checkers, majority voting)

data = {} …

import requests …

LLM

x = int(input()) …

Brown et al., 2024

Models improve with more inference attempts

pass@k (aka Coverage) = the probability of at least one success in k trials
averaged over the entire dataset of size n.

One shot weak
models…

…Can become much
better with repeated
inference attempts!

An ansatz for an inference model that improves with
repeated attempts

Interpretability and inference costs

We assume a simple construction:
A memory module M memorizes a
set of “solutions” up to a certain
capacity. Then the inference
module I infers from M with some
error probability for each solution
given by . pi

Bonus: Variational Autoencoder reconstruction
experiment

Optimization by gradient flow dynamics yields a simple solution for :

The losses admit a very simple form:

Since is a random vector, the meaningful quantities are the training Gram matrix
eigenvalues, which follow the Marcenko Pastur (MP) distribution:

The MP distribution can be used to approximate the empirical expectations by the
distribution expectations:

D(t)

D0

Diversity in “perceived difficulty” of tasks
determines the inference scaling of a model

Left: Empirical pass@k for several LLMs on MATH questions, for varying k repeated inference attempts.
Right: Probability distribution of inference failures required to match theory predictions to the empirical results.

p = 0.95,κ = 0.62,𝒜 = 0.8

p = 0.84,κ = 0.8,𝒜 = 0.95
p = 0.89,κ = 0.7,𝒜 = 0.92

α = 18,σ = 0.32,𝒜 = 0.93

α = 2.4,β = 0.34,𝒜 = 1
α = 5.5,β = 0.38,𝒜 = 0.98 Gemma-2B MATH

(Oracle Verifier)
Llama-3-8B MATH

(Oracle Verifier)
Pythia-2.8B MATH

(Oracle Verifier)

PDF
CDFGemma-2B MATH

(Oracle Verifier)

Llama-3-8B MATH
(Oracle Verifier)

Pythia-2.8B MATH
(Oracle Verifier)

0.0 0.2 0.4 0.6 0.8 1.0
10-13

10-9

10-5

0.1

1000.0

1 10 100 1000 104
0.0

0.2

0.4

0.6

0.8

1.0

How and why does it work?

0.0 0.1 0.2 0.3 0.4 0.5

5

10

15

20

0.0 0.1 0.2 0.3 0.4 0.5
1

10
100

1000
104
105
106

0.0 0.1 0.2 0.3 0.4 0.5

5

10

15

20

0.0 0.1 0.2 0.3 0.4 0.5
1

10
100

1000
104
105
106

1 10 100 1000 104
0.05

0.10

0.50

1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Gemma-2B MATH
(Oracle Verifier)

Llama-3-8B MATH
(Oracle Verifier)

Pythia-2.8B MATH
(Oracle Verifier)

p = 0.95,κ = 0.62,𝒜 = 0.8

p = 0.84,κ = 0.8,𝒜 = 0.95
p = 0.89,κ = 0.7,𝒜 = 0.92

α = 18,σ = 0.32,𝒜 = 0.93

α = 2.4,β = 0.34,𝒜 = 1
α = 5.5,β = 0.38,𝒜 = 0.98

0.0 0.1 0.2 0.3 0.4 0.5

5

10

15

20

0.0 0.1 0.2 0.3 0.4 0.5
1

10
100

1000
104
105
106

0.0 0.1 0.2 0.3 0.4 0.5

5

10

15

20

0.0 0.1 0.2 0.3 0.4 0.5
1

10
100

1000
104
105
106

1 10 100 1000 104
0.05

0.10

0.50

1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Gemma-2B MATH
(Oracle Verifier)

Llama-3-8B MATH
(Oracle Verifier)

Pythia-2.8B MATH
(Oracle Verifier)

p = 0.95,κ = 0.62,𝒜 = 0.8

p = 0.84,κ = 0.8,𝒜 = 0.95
p = 0.89,κ = 0.7,𝒜 = 0.92

α = 18,σ = 0.32,𝒜 = 0.93

α = 2.4,β = 0.34,𝒜 = 1
α = 5.5,β = 0.38,𝒜 = 0.98

Inference losses for different
models and parameters

= 𝒜 × (1 −
Γ(β)Γ(k + α)

B(α, β)Γ(k + α + β))
pass@k ≈ 𝒜 × (1 − ⟨pk⟩) = 𝒜 × (1 − ∫

1

0
dppk p−1+α(1 − p)−1+β

B(α, β))

Key: all the information is in the distribution of .
To construct the failure distribution, we assume that different samples
may have different inference complexity levels, incorporating some "easy"
and some "difficult" samples with respect to the inference model.

One way to model the different complexities is using the Beta distribution.
We think of the failure probability across samples itself as a random
variable, drawn from

Where controls easy questions and determines the hard tail.

Result 1: analytical pass@k given by

pi

p = pi

Beta(α, β; p) =
p−1+α(1 − p)−1+β

B(α, β)
α β

Result 2: analytical inference loss:

ℒinference(k) ≡ 𝔼(Error in k trials) = 𝔼(𝒜 × pk) ≈ 𝒜 ×
Γ(β)Γ(k + α)

B(α, β)Γ(k + α + β)
≈

k→∞
𝒜 ×

Γ(β)k−β

B(α, β)

Power law decay for large k!

*Dashed curves indicate the theory given here, dotted curves are an alternative, dual theory described in the paper

Input Encoder Latent
Space Decoder Output Reconstructed ImagesOriginal Images

Temperature

T

0.10

0.20

0.40

0.60

0.80

0.90

0.95

Llama-3-8B MATH
(Oracle Verifier)

1014 1015 1016 1017

1000

105

107

109
Np = Nd = 5 × 105

pass@k

1014 1015 1016 1017

1000

105

107

109

Llama-3-8B MATH
(Oracle Verifier)

F = 105

F = 106

F = 107

Np = Nd = 5 × 105

1014 1015 1016 1017

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0F = 107

Inference cost for different parameter values

where is the inference cost per token, are the number of prompt

and decode tokens, respectively, and is the number of FLOPS per token.

Np, Nd

F

𝒞 × F = Np × F + Nd × k × F=

Under the following assumptions, the pass@k is given: Task: We train a VAE with a temperature
parameter to reconstruct its training samples
(FMNIST), with a failure threshold parameter .

Result: The controlled reconstruction task
obeys the same type of pass@k scaling,
indicating some universality of the simple
model.

ε

M

Memory module with capacity

I
Inference module with failure

probability per sample pi

Prompt i Answer Ii

This model can easily connect the measured pass@k curves with the unknown
failure probability distribution of different models!

Procedure: measure the pass@k, then define . The
Laplace transform relates the “difficulty distribution” with the pass@k metric, as:

f̃(k) = (𝒜 − pass@k)/𝒜

f̃(k) = ⟨pk⟩ = ∫
∞

0
dσe−σk e−ασ (1 − e−σ)−1+β

B(α, β)
= ∫

∞

0
dσe−σkf(σ) .

Cost of Compute: We can also relate our scaling laws to a “compute pass@k”
with repeated inference attempts, given analytically by:

We relate attempts to compute cost through a simple formula:

