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This model can easily connect the measured pass@k curves with the unknown

TL; DR: We introduce a Simple theoretical model explaining failure probability distribution of different models!

the observed behavior of LLM performance on reasoning

tasks with increasing number of inference attempts. Dashed curves indicate the theory given here, dotted curves are an alternative, dual theory described in the paper Procedure: measure the pass@k, then define f(k) = (o — pass@k)/<f. The
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Step 1: Generate many candidate solutions. Step 2: Use a verifier to pick a final answer. . y Pz i Pythia-2.8B MATH -
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Problem 1 (coverage): Can we generate a correct Problem 2 (precision): Can we identify a correct (Oracle Verifier) B (CM 5) N d
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Brown et al.. 2024 solution? solution from the generated samples?
P ~ 1000 104 . . : 0.0 : : We relate attempts to compute cost through a simple formula:

pass@k (aka Coverage) = the probability of at least one success in k trials o Failure Probability p C=C XF=N,XF+N;xkxF

averaged over the entire dataset of size n. : :
u 5 Left: Empirical pass@k for several LLMs on MATH questions, for varying k repeated inference attempts. where C is the inference cost per token, N,, N, are the number of prompt

SWE-bench Lite Right: Probability distribution of inference failures required to match theory predictions to the empirical results. and decode tokens, respectively, and F'is the number of FLOPS per token.
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Cost of Compute: We can also relate our scaling laws to a “compute pass@k”
with repeated inference attempts, given analytically by:
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To construct the failure distribution, we assume that different samples 501 oy TN TR m08ke = 08ar =005 , | | | j | | | 0.3
may have different inference complexity levels, incorporating some "easy"
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and some "difficult" samples with respect to the inference model.
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set of “solutions” up to a certain v Beta(a, p; p) = B(a. B) k

capacity. Then the inference Inference losses for different

N \ . . . T Temperature
N Where a controls easy questions and / determines the hard tail. - - I
module / infers from M with some Prompt ya p models and parameters 0 blals
error probability for each solution Inference module with failure | Linterence :

10
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Assumption 3.1. For every sample ¢, we have access to a perfect verification method, which can X (1 P 8 P
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determine if there exists a correct generated answer during inference (i) = y;, among k possible B(a, p)I'(k+ a+ p) 5 (FMNIST), with a failure threshold parameter €.
candidates {11 (%), ..., Ix(7)}.

Assumption 3.2. Inference attempts {I; (%), ..., Ix(¢)} are independent and identically distributed Result 2: analytical inference loss:
(1.1.d.) random variables.

Under the following assumptions, the pass@k is given:
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Result: The controlled reconstruction task
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