Pruning for GNNs: Lower Complexity with Comparable Expressiveness Dun Ma¹ Jianguo Chen^{2,4} Wenguo Yang² Suixiang Gao^{2,5} Shengminjie Chen³ ¹School of Advanced Interdisciplinary Sciences, University of Chinese Academy of Sciences ²School of Mathematical Sciences, University of Chinese Academy of Sciences ³Institute of Computing Technology, Chinese Academy of Sciences ⁴Academy of Mathematics and Systems Science, Chinese Academy of Sciences ⁵Zhongguancun Laboratory.Beijing, China May 25, 2025 #### Outline Introduction 2 Pruned Message-Passing Framework 3 Experiment #### Graph Neural Network • Standard Message-Passing GNN: $$M_{v}^{I} = AGG^{I}(\{\{H_{u}^{I-1}|u \in N(v)\}\})$$ (1) $$H_{\nu}^{l} = COB^{l}(H_{\nu}^{l-1}, M_{\nu}^{l})$$ (2) Multi-Aggregation GNN: $$M_{v}^{l,k} = AGG_{k}^{l}(\{\{H_{u}^{l-1} \mid u \in N_{path}^{k}(v)\}\}),$$ (3) $$\mathbf{M}_{v}^{I} = (M_{v}^{I,1}, M_{v}^{I,2}, \cdots, M_{v}^{I,K})$$ (4) $$H_{\nu}^{I} = COB^{I}(H_{\nu}^{I-1}, \mathbf{M}_{\nu}^{I})$$ (5) #### Matrix Language #### **Theorem** Two adjacency matrices are indistinguishable by the 1-WL test if and only if $e(A_G) = e(A_{G'})$ for all $e \in ML(\mathcal{L}_1)$, where $\mathcal{L}_1 = \{.,^\top, \mathbf{1}, \mathrm{diag}\}$. - Matrix languages $ML(\mathcal{L})$ can be formalised through composition of linear algebra operations. A linear algebra operation takes a number of matrices as input and returns another matrix (vector or scalar). - For example, if A is a adjacency matrix, then $e(A) = \mathbf{1}^{\top} A \mathbf{1}$ is a scalar sentence in $ML(\mathcal{L})$ with $\mathcal{L} = \{.,^{\top}, \mathbf{1}\}$, computing the number of edges in G. - Denote $(G, G') \in Gl_{\mathcal{A}}^{L}$, if graph isomorphism algorithm \mathcal{A} decides (G, G') is isomorphic at L^{th} iteration. $Gl_{\mathcal{A}}^{L} \subset Gl_{\mathcal{B}}^{L}$ denotes \mathcal{A} more powerful than \mathcal{B} . ### Algebra Operation of Matrix Language ``` conjugate transposition (op(e) = e^*) e(\nu(X)) = A \in \mathbb{C}^{m \times n} e(\nu(X))^* = A^* \in \mathbb{C}^{n \times m} (A^*)_{ij} = \overline{A}_{ji} one-vector (op(e) = \mathbf{1}(e)) e(\nu(X)) = A \in \mathbb{C}^{m \times n} \mathbf{1}(e(\nu(X)) = \mathbf{1} \in \mathbb{C}^{m \times 1} 1_i = 1 diagonalization of a vector (op(e) = diag(e)) diag(A)_{ii} = A_{i} e(\nu(X)) = A \in \mathbb{C}^{m \times 1} diag(e(\nu(X)) = diag(A) \in \mathbb{C}^{m \times m} diag(A)_{ij} = 0, i \neq 1 matrix multiplication (op(e_1, e_2) = e_1 \cdot e_2) e_1(\nu(X)) = A \in \mathbb{C}^{m \times n} e_1(\nu(X)) \cdot e_2(\nu(X)) = C \in \mathbb{C}^{m \times o} C_{ii} = \sum_{k=1}^{n} A_{ik} \times B e_2(\nu(X)) = B \in \mathbb{C}^{n \times o} scalar multiplication (op(e) = c \times e, c \in \mathbb{C}) e(\nu(X)) = A \in \mathbb{C}^{m \times n} c \times e(\nu(X)) = B \in \mathbb{C}^{m \times n} B_{ii} = c \times A_{ii} trace (op(e) = tr(e)) e(\nu(X)) = A \in \mathbb{C}^{m \times m} \operatorname{tr}(e(\nu(X)) = c \in \mathbb{C} c = \sum_{i=1}^{m} A_{ii} pointwise matrix multiplication (Schur-Hadamard) (op(e_1, e_2) = e_1 \odot e_2) e_1(\nu(X)) = A \in \mathbb{C}^{m \times n} e_1(\nu(X)) \odot e_2(\nu(X)) = C \in \mathbb{C}^{m \times n} C_{ii} = A_{ii} \times B_{ii} e_2(\nu(X)) = B \in \mathbb{C}^{m \times n} ``` #### a_k-walk Message-Passing Framework #### **Theorem** Given a positive integer sequence a_k and a pair of graphs (G, G'), $S_k = \sum_{t \in [k]} a_t$, if a_k is viewable, then $\forall I \in \mathbb{N}^+$ $Gl^I_{a_k-walk} \subseteq Gl^{S_I}_{WL}$. - Given a positive integers sequence a_k , $S_k = \sum_{t \in [k]} a_t$. a_k is viewable if $\forall k \in \mathbb{N}^+$, $r \in [S_k]$ (The subset sums of a_k are dense in \mathbb{N}^+) - a_k-walk Message-Passing GNN: $$M_{v}^{k} = \underbrace{AGG(\cdots AGG}_{a_{k} \text{ times}}(\{\!\{H_{u}|u \in N(v)\}\!\})). \tag{6}$$ $$H_{\nu}^{I} = COB^{I}(H_{\nu}^{I-1}, M_{\nu}^{I})$$ (7) ### Pruned Multi-Aggregation GNN #### **Theorem** Given a pair of graphs (G,G') and $K\in\mathbb{N}^+$, $\forall L\in\mathbb{N}^+$, for K-Path GNN, the expressiveness of pruned K-Path framework is as powerful as K-Path framework: $GI_{PRK-P}^L = GI_{K-P}^L$. For K-Hop GNN, Pruned framework have same expressiveness referring to regular graphs and strong regular graphs: $(RG\cap GI_{PR2-H}^L)\subseteq (RG\cap GI_{2-H}^L)$, $(SRG\cap GI_{REK-H}^L)\subseteq (SRG\cap GI_{K-H}^L)$. • Pruned Multi-Aggregation GNN: When $I \leq K$: $$M_{v}^{l,k} = AGG_{k}^{l}(\{\{H_{u}^{l-1}|u \in N_{path}^{k}(v)\}\})(k \le l \le K)$$ (8) $$\mathbf{M}_{v}^{I} = (M_{v}^{I,I}, M_{v}^{I,I+1}, \cdots, M_{v}^{I,K})$$ (9) $$H_{\nu}^{I} = COB^{I}(H_{\nu}^{I-1}, \mathbf{M}_{\nu}^{I})$$ $$(10)$$ else when I > K: $$M_{v}^{l,K} = AGG_{K}^{l}(\{\{H_{u}^{l-1}|u \in N_{path}^{K}(v)\}\})$$ $$H_{v}^{l} = COB^{l}(H_{v}^{l-1}, M_{v}^{l,K})$$ (11) ### The Pruning Weisfeiler-Lehman Algorithm ``` 1: Input: Graph G = (V, E), number of iterations L. 2: Initialization: \forall v \in V, \chi^0(v), I = 0. 3: while l < L do l = l + 1. t = 1. m_1^l(v) = Hash(\{\{\chi^{l-1}(u) : u \in N(v)\}\}). for \forall v \in V do 6: while t < 2^{l-1} do 7: t = t + 1. 8. m_{t}^{l}(v) = Hash(\{\{m_{t-1}^{l}(u) : u \in N(v)\}\}). g. 10: end while \chi^{l}(v) = Hash(\chi^{l-1}(v), m_{2l-1}^{l}(v)). 11: end for 12: 13: end while 14: Output: Final labels \chi^L(v) for all v \in V. ``` #### The Pruned Multi-Weisfeiler-Lehman Algorithm ``` 1: Input: Graph G = (V, E, X), number of iterations L. 2: Initialization: \forall v \in V, \chi^0(v), I = 0. 3: while I \leq K do I = I + 1. 5: for v \in V do 6: for t \in [I, K] do 7: \chi_t^l(v) = Hash(\{\{\chi^{l-1}(u) : u \in N_t^t(v)\}\}). 8: end for 9. X^{l}(v) = (\chi^{l}_{l}(v), \chi^{l}_{l+1}(v), \cdots, \chi^{l}_{k}(v)). \chi'(v) = Hash(\chi^{l-1}(v), \mathbf{X}^{l}(v)). 10: end for 11: end while 12: while I < L do 13: I = I + 1. 14: for v \in V do \chi^{l}(v) = Hash(\chi^{l-1}(v), \{\{\chi^{l-1}(u) : u \in N_{nath}^{L}(v)\}\}). 15: 16: end for 17: end while 18: Output: Final labels \chi^L(v) for all v \in V. ``` ## Process of WL Test on Long-refinement Graph # Process of Pruned WL Test and Pruned 2-hop WL Test on Long-refinement Graph ### Comparison on training efficiency Table: Comparison on training efficiency | Model | Time | OLLAB
Acc (%) | Time | NCI1
Acc (%) | Time | MDB-B
Acc (%) | Time | IDB-M
Acc (%) | Time M | UTAG
Acc (%) | PR
Time | OTEINS
Acc (%) | |---------------------------|----------------|---|-----------------|---|----------------|---|----------------|---|-----------------|---|----------------|---| | GIN(3)
PR GIN(1) | 1.104
1.060 | $\begin{array}{c} 74.8\pm1.3 \\ 73.9\pm0.0 \end{array}$ | 0.480
0.461 | $71.9 \pm 0.5 \\ 72.9 \pm 1.4$ | 0.251
0.209 | $\begin{array}{c} 71.9 \pm 0.3 \\ 69.9 \pm 2.0 \end{array}$ | 0.304
0.284 | $\begin{array}{c} 49.9 \pm 0.0 \\ 50.6 \pm 0.3 \end{array}$ | 0.889
0.886 | 89.4 ± 0.4
88.5 ± 0.0 | 0.268
0.233 | $\begin{array}{c} 73.7 \pm 0.7 \\ 72.2 \pm 1.9 \end{array}$ | | GIN(7)
PR GIN(124) | 1.638
1.284 | 77.4 ± 1.6
76.4 ± 0.7 | 0.748
0.6961 | 71.5 ± 1.4
75.4 ± 0.2 | 0.578
0.481 | $\begin{array}{c} 72.6\pm0.3 \\ 71.7\pm1.4 \end{array}$ | 0.534
0.464 | $\begin{array}{c} 51.1\pm0.3 \\ 52.0\pm0.5 \end{array}$ | 0.904
0.916 | 89.4 ± 1.0
92.0 ± 0.4 | 0.527
0.425 | $\begin{array}{c} 76.3 \pm 0.2 \\ 74.1 \pm 1.0 \end{array}$ | | GIN(10)
PR GIN(1234) | 2.142
1.689 | $\begin{array}{c} 74.7\pm0.6 \\ 75.6\pm0.3 \end{array}$ | 1.122
0.981 | $\begin{array}{c} 75.9 \pm 1.3 \\ 74.7 \pm 0.2 \end{array}$ | 0.948
0.710 | $\begin{array}{c} 72.1\pm2.8 \\ 71.5\pm0.5 \end{array}$ | 0.898
0.780 | $\begin{array}{c} 49.7\pm1.5 \\ 51.2\pm0.9 \end{array}$ | 0.874
0.929 | $\begin{array}{c} 87.7\pm0.2 \\ 90.7\pm2.1 \end{array}$ | 0.867
0.667 | $\begin{array}{c} 72.3 \pm 0.0 \\ 72.5 \pm 2.2 \end{array}$ | | 2-Hop(3)
PR 2-Hop(3) | 1.357
1.180 | $\begin{array}{c} 76.8\pm0.8 \\ 75.1\pm1.1 \end{array}$ | 0.608
0.528 | $\begin{array}{c} 73.6 \pm 0.9 \\ 76.5 \pm 1.6 \end{array}$ | 0.410
0.357 | $\begin{array}{c} 71.0\pm0.7 \\ 71.5\pm0.5 \end{array}$ | 0.415
0.361 | $\begin{array}{c} 50.1\pm1.5 \\ 52.5\pm0.7 \end{array}$ | 0.910
0.929 | $\begin{array}{c} 91.0\pm0.0 \\ 91.3\pm1.5 \end{array}$ | 0.394
0.342 | $\begin{array}{c} 69.5\pm1.3 \\ 73.3\pm0.3 \end{array}$ | | 2-Hop(5)
PR 2-Hop(5) | 1.927
1.606 | $\begin{array}{c} 74.2\pm0.5 \\ 74.5\pm0.4 \end{array}$ | 0.880
0.734 | $\begin{array}{c} 70.6\pm1.7 \\ 71.1\pm1.5 \end{array}$ | 0.680
0.566 | $\begin{array}{c} 68.8\pm0.8 \\ 69.7\pm0.2 \end{array}$ | 0.628
0.523 | $\begin{array}{c} 49.5\pm0.6 \\ 48.0\pm2.2 \end{array}$ | 0.894
0.871 | $\begin{array}{c} 88.3\pm1.0 \\ 88.7\pm1.5 \end{array}$ | 0.621
0.517 | $\begin{array}{c} 71.0 \pm 0.8 \\ 72.0 \pm 0.3 \end{array}$ | | 2-Path(3)
PR 2-Path(3) | 1.385
1.385 | $\begin{array}{c} 75.6\pm0.0 \\ 76.1\pm0.3 \end{array}$ | 0.620
0.632 | $\begin{array}{c} 73.0 \pm 0.8 \\ 75.5 \pm 0.4 \end{array}$ | 0.418
0.488 | $\begin{array}{c} 71.4 \pm 0.1 \\ 74.2 \pm 1.9 \end{array}$ | 0.423
0.451 | $\begin{array}{c} 49.5\pm1.8 \\ 51.6\pm0.4 \end{array}$ | 0.9045
0.915 | $\begin{array}{c} 88.7 \pm 1.7 \\ 91.6 \pm 0.0 \end{array}$ | 0.402
0.446 | $\begin{array}{c} 72.7\pm2.0 \\ 76.9\pm0.7 \end{array}$ | | 2-Path(5)
PR 2-Path(5) | 2.111
1.730 | $\begin{array}{c} 76.0\pm0.2 \\ 72.1\pm2.0 \end{array}$ | 0.964
0.790 | $\begin{array}{c} 74.2 \pm 0.3 \\ 70.5 \pm 2.3 \end{array}$ | 0.745
0.610 | $\begin{array}{c} 70.0\pm0.6 \\ 71.8\pm1.5 \end{array}$ | 0.688
0.564 | $\begin{array}{c} 51.3 \pm 0.1 \\ 50.2 \pm 0.2 \end{array}$ | 0.890
0.898 | 89.4 ± 0.4
88.9 ± 0.8 | 0.680
0.557 | $\begin{array}{c} 69.3 \pm 1.0 \\ 71.9 \pm 2.4 \end{array}$ | # Thank You for Listening!