Pruning for GNNs: Lower Complexity with Comparable Expressiveness

Dun Ma¹ Jianguo Chen^{2,4} Wenguo Yang² Suixiang Gao^{2,5} Shengminjie Chen³

¹School of Advanced Interdisciplinary Sciences, University of Chinese Academy of Sciences
 ²School of Mathematical Sciences, University of Chinese Academy of Sciences
 ³Institute of Computing Technology, Chinese Academy of Sciences
 ⁴Academy of Mathematics and Systems Science, Chinese Academy of Sciences
 ⁵Zhongguancun Laboratory.Beijing, China

May 25, 2025

Outline

Introduction

2 Pruned Message-Passing Framework

3 Experiment

Graph Neural Network

• Standard Message-Passing GNN:

$$M_{v}^{I} = AGG^{I}(\{\{H_{u}^{I-1}|u \in N(v)\}\})$$
 (1)

$$H_{\nu}^{l} = COB^{l}(H_{\nu}^{l-1}, M_{\nu}^{l})$$
 (2)

Multi-Aggregation GNN:

$$M_{v}^{l,k} = AGG_{k}^{l}(\{\{H_{u}^{l-1} \mid u \in N_{path}^{k}(v)\}\}),$$
(3)

$$\mathbf{M}_{v}^{I} = (M_{v}^{I,1}, M_{v}^{I,2}, \cdots, M_{v}^{I,K})$$
(4)

$$H_{\nu}^{I} = COB^{I}(H_{\nu}^{I-1}, \mathbf{M}_{\nu}^{I})$$
 (5)

Matrix Language

Theorem

Two adjacency matrices are indistinguishable by the 1-WL test if and only if $e(A_G) = e(A_{G'})$ for all $e \in ML(\mathcal{L}_1)$, where $\mathcal{L}_1 = \{.,^\top, \mathbf{1}, \mathrm{diag}\}$.

- Matrix languages $ML(\mathcal{L})$ can be formalised through composition of linear algebra operations. A linear algebra operation takes a number of matrices as input and returns another matrix (vector or scalar).
- For example, if A is a adjacency matrix, then $e(A) = \mathbf{1}^{\top} A \mathbf{1}$ is a scalar sentence in $ML(\mathcal{L})$ with $\mathcal{L} = \{.,^{\top}, \mathbf{1}\}$, computing the number of edges in G.
- Denote $(G, G') \in Gl_{\mathcal{A}}^{L}$, if graph isomorphism algorithm \mathcal{A} decides (G, G') is isomorphic at L^{th} iteration. $Gl_{\mathcal{A}}^{L} \subset Gl_{\mathcal{B}}^{L}$ denotes \mathcal{A} more powerful than \mathcal{B} .

Algebra Operation of Matrix Language

```
conjugate transposition (op(e) = e^*)
e(\nu(X)) = A \in \mathbb{C}^{m \times n}
                                                             e(\nu(X))^* = A^* \in \mathbb{C}^{n \times m}
                                                                                                                                     (A^*)_{ij} = \overline{A}_{ji}
one-vector (op(e) = \mathbf{1}(e))
e(\nu(X)) = A \in \mathbb{C}^{m \times n}
                                                              \mathbf{1}(e(\nu(X)) = \mathbf{1} \in \mathbb{C}^{m \times 1}
                                                                                                                                         1_i = 1
diagonalization of a vector (op(e) = diag(e))
                                                                                                                                  diag(A)_{ii} = A_{i}
e(\nu(X)) = A \in \mathbb{C}^{m \times 1}
                                                     diag(e(\nu(X)) = diag(A) \in \mathbb{C}^{m \times m}
                                                                                                                               diag(A)_{ij} = 0, i \neq 1
matrix multiplication (op(e_1, e_2) = e_1 \cdot e_2)
e_1(\nu(X)) = A \in \mathbb{C}^{m \times n}
                                                     e_1(\nu(X)) \cdot e_2(\nu(X)) = C \in \mathbb{C}^{m \times o}
                                                                                                                             C_{ii} = \sum_{k=1}^{n} A_{ik} \times B
e_2(\nu(X)) = B \in \mathbb{C}^{n \times o}
scalar multiplication (op(e) = c \times e, c \in \mathbb{C})
e(\nu(X)) = A \in \mathbb{C}^{m \times n}
                                                           c \times e(\nu(X)) = B \in \mathbb{C}^{m \times n}
                                                                                                                                    B_{ii} = c \times A_{ii}
trace (op(e) = tr(e))
e(\nu(X)) = A \in \mathbb{C}^{m \times m}
                                                                \operatorname{tr}(e(\nu(X)) = c \in \mathbb{C}
                                                                                                                                   c = \sum_{i=1}^{m} A_{ii}
pointwise matrix multiplication (Schur-Hadamard) (op(e_1, e_2) = e_1 \odot e_2)
e_1(\nu(X)) = A \in \mathbb{C}^{m \times n}
                                                    e_1(\nu(X)) \odot e_2(\nu(X)) = C \in \mathbb{C}^{m \times n}
                                                                                                                                   C_{ii} = A_{ii} \times B_{ii}
e_2(\nu(X)) = B \in \mathbb{C}^{m \times n}
```

a_k-walk Message-Passing Framework

Theorem

Given a positive integer sequence a_k and a pair of graphs (G, G'), $S_k = \sum_{t \in [k]} a_t$, if a_k is viewable, then $\forall I \in \mathbb{N}^+$ $Gl^I_{a_k-walk} \subseteq Gl^{S_I}_{WL}$.

- Given a positive integers sequence a_k , $S_k = \sum_{t \in [k]} a_t$. a_k is viewable if $\forall k \in \mathbb{N}^+$, $r \in [S_k]$ (The subset sums of a_k are dense in \mathbb{N}^+)
- a_k-walk Message-Passing GNN:

$$M_{v}^{k} = \underbrace{AGG(\cdots AGG}_{a_{k} \text{ times}}(\{\!\{H_{u}|u \in N(v)\}\!\})). \tag{6}$$

$$H_{\nu}^{I} = COB^{I}(H_{\nu}^{I-1}, M_{\nu}^{I})$$
 (7)

Pruned Multi-Aggregation GNN

Theorem

Given a pair of graphs (G,G') and $K\in\mathbb{N}^+$, $\forall L\in\mathbb{N}^+$, for K-Path GNN, the expressiveness of pruned K-Path framework is as powerful as K-Path framework: $GI_{PRK-P}^L = GI_{K-P}^L$. For K-Hop GNN, Pruned framework have same expressiveness referring to regular graphs and strong regular graphs: $(RG\cap GI_{PR2-H}^L)\subseteq (RG\cap GI_{2-H}^L)$, $(SRG\cap GI_{REK-H}^L)\subseteq (SRG\cap GI_{K-H}^L)$.

• Pruned Multi-Aggregation GNN: When $I \leq K$:

$$M_{v}^{l,k} = AGG_{k}^{l}(\{\{H_{u}^{l-1}|u \in N_{path}^{k}(v)\}\})(k \le l \le K)$$
 (8)

$$\mathbf{M}_{v}^{I} = (M_{v}^{I,I}, M_{v}^{I,I+1}, \cdots, M_{v}^{I,K})$$
(9)

$$H_{\nu}^{I} = COB^{I}(H_{\nu}^{I-1}, \mathbf{M}_{\nu}^{I})$$

$$(10)$$

else when I > K:

$$M_{v}^{l,K} = AGG_{K}^{l}(\{\{H_{u}^{l-1}|u \in N_{path}^{K}(v)\}\})$$

$$H_{v}^{l} = COB^{l}(H_{v}^{l-1}, M_{v}^{l,K})$$
(11)

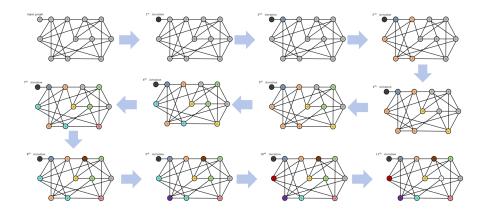
The Pruning Weisfeiler-Lehman Algorithm

```
1: Input: Graph G = (V, E), number of iterations L.
2: Initialization: \forall v \in V, \chi^0(v), I = 0.
3: while l < L do
    l = l + 1. t = 1.
    m_1^l(v) = Hash(\{\{\chi^{l-1}(u) : u \in N(v)\}\}).
    for \forall v \in V do
6:
   while t < 2^{l-1} do
7:
            t = t + 1.
8.
            m_{t}^{l}(v) = Hash(\{\{m_{t-1}^{l}(u) : u \in N(v)\}\}).
g.
10:
         end while
         \chi^{l}(v) = Hash(\chi^{l-1}(v), m_{2l-1}^{l}(v)).
11:
       end for
12:
13: end while
14: Output: Final labels \chi^L(v) for all v \in V.
```

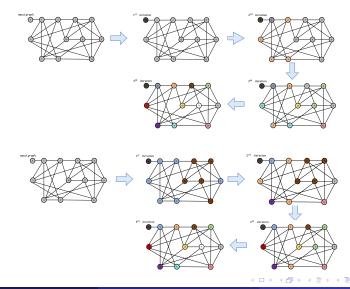
The Pruned Multi-Weisfeiler-Lehman Algorithm

```
1: Input: Graph G = (V, E, X), number of iterations L.
 2: Initialization: \forall v \in V, \chi^0(v), I = 0.
 3: while I \leq K do
       I = I + 1.
 5: for v \in V do
 6:
           for t \in [I, K] do
 7:
                \chi_t^l(v) = Hash(\{\{\chi^{l-1}(u) : u \in N_t^t(v)\}\}).
 8:
            end for
9.
            X^{l}(v) = (\chi^{l}_{l}(v), \chi^{l}_{l+1}(v), \cdots, \chi^{l}_{k}(v)).
            \chi'(v) = Hash(\chi^{l-1}(v), \mathbf{X}^{l}(v)).
10:
         end for
11: end while
12: while I < L do
13: I = I + 1.
14: for v \in V do
            \chi^{l}(v) = Hash(\chi^{l-1}(v), \{\{\chi^{l-1}(u) : u \in N_{nath}^{L}(v)\}\}).
15:
16:
         end for
17: end while
18: Output: Final labels \chi^L(v) for all v \in V.
```

Process of WL Test on Long-refinement Graph



Process of Pruned WL Test and Pruned 2-hop WL Test on Long-refinement Graph



Comparison on training efficiency

Table: Comparison on training efficiency

Model	Time	OLLAB Acc (%)	Time	NCI1 Acc (%)	Time	MDB-B Acc (%)	Time	IDB-M Acc (%)	Time M	UTAG Acc (%)	PR Time	OTEINS Acc (%)
GIN(3) PR GIN(1)	1.104 1.060	$\begin{array}{c} 74.8\pm1.3 \\ 73.9\pm0.0 \end{array}$	0.480 0.461	$71.9 \pm 0.5 \\ 72.9 \pm 1.4$	0.251 0.209	$\begin{array}{c} 71.9 \pm 0.3 \\ 69.9 \pm 2.0 \end{array}$	0.304 0.284	$\begin{array}{c} 49.9 \pm 0.0 \\ 50.6 \pm 0.3 \end{array}$	0.889 0.886	89.4 ± 0.4 88.5 ± 0.0	0.268 0.233	$\begin{array}{c} 73.7 \pm 0.7 \\ 72.2 \pm 1.9 \end{array}$
GIN(7) PR GIN(124)	1.638 1.284	77.4 ± 1.6 76.4 ± 0.7	0.748 0.6961	71.5 ± 1.4 75.4 ± 0.2	0.578 0.481	$\begin{array}{c} 72.6\pm0.3 \\ 71.7\pm1.4 \end{array}$	0.534 0.464	$\begin{array}{c} 51.1\pm0.3 \\ 52.0\pm0.5 \end{array}$	0.904 0.916	89.4 ± 1.0 92.0 ± 0.4	0.527 0.425	$\begin{array}{c} 76.3 \pm 0.2 \\ 74.1 \pm 1.0 \end{array}$
GIN(10) PR GIN(1234)	2.142 1.689	$\begin{array}{c} 74.7\pm0.6 \\ 75.6\pm0.3 \end{array}$	1.122 0.981	$\begin{array}{c} 75.9 \pm 1.3 \\ 74.7 \pm 0.2 \end{array}$	0.948 0.710	$\begin{array}{c} 72.1\pm2.8 \\ 71.5\pm0.5 \end{array}$	0.898 0.780	$\begin{array}{c} 49.7\pm1.5 \\ 51.2\pm0.9 \end{array}$	0.874 0.929	$\begin{array}{c} 87.7\pm0.2 \\ 90.7\pm2.1 \end{array}$	0.867 0.667	$\begin{array}{c} 72.3 \pm 0.0 \\ 72.5 \pm 2.2 \end{array}$
2-Hop(3) PR 2-Hop(3)	1.357 1.180	$\begin{array}{c} 76.8\pm0.8 \\ 75.1\pm1.1 \end{array}$	0.608 0.528	$\begin{array}{c} 73.6 \pm 0.9 \\ 76.5 \pm 1.6 \end{array}$	0.410 0.357	$\begin{array}{c} 71.0\pm0.7 \\ 71.5\pm0.5 \end{array}$	0.415 0.361	$\begin{array}{c} 50.1\pm1.5 \\ 52.5\pm0.7 \end{array}$	0.910 0.929	$\begin{array}{c} 91.0\pm0.0 \\ 91.3\pm1.5 \end{array}$	0.394 0.342	$\begin{array}{c} 69.5\pm1.3 \\ 73.3\pm0.3 \end{array}$
2-Hop(5) PR 2-Hop(5)	1.927 1.606	$\begin{array}{c} 74.2\pm0.5 \\ 74.5\pm0.4 \end{array}$	0.880 0.734	$\begin{array}{c} 70.6\pm1.7 \\ 71.1\pm1.5 \end{array}$	0.680 0.566	$\begin{array}{c} 68.8\pm0.8 \\ 69.7\pm0.2 \end{array}$	0.628 0.523	$\begin{array}{c} 49.5\pm0.6 \\ 48.0\pm2.2 \end{array}$	0.894 0.871	$\begin{array}{c} 88.3\pm1.0 \\ 88.7\pm1.5 \end{array}$	0.621 0.517	$\begin{array}{c} 71.0 \pm 0.8 \\ 72.0 \pm 0.3 \end{array}$
2-Path(3) PR 2-Path(3)	1.385 1.385	$\begin{array}{c} 75.6\pm0.0 \\ 76.1\pm0.3 \end{array}$	0.620 0.632	$\begin{array}{c} 73.0 \pm 0.8 \\ 75.5 \pm 0.4 \end{array}$	0.418 0.488	$\begin{array}{c} 71.4 \pm 0.1 \\ 74.2 \pm 1.9 \end{array}$	0.423 0.451	$\begin{array}{c} 49.5\pm1.8 \\ 51.6\pm0.4 \end{array}$	0.9045 0.915	$\begin{array}{c} 88.7 \pm 1.7 \\ 91.6 \pm 0.0 \end{array}$	0.402 0.446	$\begin{array}{c} 72.7\pm2.0 \\ 76.9\pm0.7 \end{array}$
2-Path(5) PR 2-Path(5)	2.111 1.730	$\begin{array}{c} 76.0\pm0.2 \\ 72.1\pm2.0 \end{array}$	0.964 0.790	$\begin{array}{c} 74.2 \pm 0.3 \\ 70.5 \pm 2.3 \end{array}$	0.745 0.610	$\begin{array}{c} 70.0\pm0.6 \\ 71.8\pm1.5 \end{array}$	0.688 0.564	$\begin{array}{c} 51.3 \pm 0.1 \\ 50.2 \pm 0.2 \end{array}$	0.890 0.898	89.4 ± 0.4 88.9 ± 0.8	0.680 0.557	$\begin{array}{c} 69.3 \pm 1.0 \\ 71.9 \pm 2.4 \end{array}$

Thank You for Listening!