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Graph Neural Network

Standard Message-Passing GNN:

M l
v = AGG l({{H l−1

u |u ∈ N(v)}}) (1)

H l
v = COB l(H l−1

v ,M l
v ) (2)

Multi-Aggregation GNN:

M l ,k
v = AGG l

k

(
{{H l−1

u | u ∈ Nk
path(v)}}

)
, (3)

Ml
v = (M l ,1

v ,M l ,2
v , · · · ,M l ,K

v ) (4)

H l
v = COB l

(
H l−1
v ,Ml

v

)
(5)

Short Author List (Short Institute List) Short Title May 25, 2025 3 / 13



Matrix Language

Theorem

Two adjacency matrices are indistinguishable by the 1-WL test if and only if
e(AG ) = e(AG ′) for all e ∈ ML(L1), where L1 = {.,⊤ , 1, diag}.

Matrix languages ML(L) can be formalised through composition of
linear algebra operations. A linear algebra operation takes a number of
matrices as input and returns another matrix (vector or scalar).

For example, if A is a adjacency matrix, then e(A) = 1⊤A1 is a scalar
sentence in ML(L) with L = {.,⊤ , 1}, computing the number of edges
in G .

Denote (G ,G ′) ∈ GI LA, if graph isomorphism algorithm A decides
(G ,G ′) is isomorphic at Lth iteration. GI LA ⊂ GI LB denotes A more
powerful than B.
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Algebra Operation of Matrix Language

conjugate transposition (op(e) = e∗)
e(ν(X )) = A ∈ Cm×n e(ν(X ))∗ = A∗ ∈ Cn×m (A∗)ij = Aji

one-vector (op(e) = 1(e))
e(ν(X )) = A ∈ Cm×n 1(e(ν(X )) = 1 ∈ Cm×1 1i = 1
diagonalization of a vector (op(e) = diag(e))

e(ν(X )) = A ∈ Cm×1 diag(e(ν(X )) = diag(A) ∈ Cm×m diag(A)ii = Ai ,
diag(A)ij = 0, i ̸= j

matrix multiplication (op(e1, e2) = e1 ·e2)
e1(ν(X )) = A ∈ Cm×n

e1(ν(X )) ·e2(ν(X )) = C ∈ Cm×o Cij =
∑n

k=1 Aik × Bkje2(ν(X )) = B ∈ Cn×o

scalar multiplication (op(e) = c × e, c ∈ C)
e(ν(X )) = A ∈ Cm×n c × e(ν(X )) = B ∈ Cm×n Bij = c × Aij

trace (op(e) = tr(e))
e(ν(X )) = A ∈ Cm×m tr(e(ν(X )) = c ∈ C c =

∑m
i=1 Aii

pointwise matrix multiplication (Schur-Hadamard) (op(e1, e2) = e1 ⊙ e2)
e1(ν(X )) = A ∈ Cm×n

e1(ν(X ))⊙ e2(ν(X )) = C ∈ Cm×n Cij = Aij × Bije2(ν(X )) = B ∈ Cm×n
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ak-walk Message-Passing Framework

Theorem

Given a positive integer sequence ak and a pair of graphs (G ,G ′),
Sk =

∑
t∈[k] at , if ak is viewable, then ∀l ∈ N+ GI lak−walk ⊆ GI SlWL.

Given a positive integers sequence ak , Sk =
∑

t∈[k] at . ak is viewable if

∀k ∈ N+, r ∈ [Sk ](The subset sums of ak are dense in N+)

ak -walk Message-Passing GNN:

Mk
v = AGG (· · ·AGG︸ ︷︷ ︸

ak times

({{Hu|u ∈ N(v)}})). (6)

H l
v = COB l(H l−1

v ,M l
v ) (7)
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Pruned Multi-Aggregation GNN

Theorem

Given a pair of graphs (G ,G ′) and K ∈ N+, ∀L ∈ N+, for K-Path GNN,
the expressiveness of pruned K-Path framework is as powerful as K-Path
framework: GI LPR K−P = GI LK−P . For K-Hop GNN, Pruned framework have
same expressiveness referrring to regular graphs and strong regular graphs:
(RG ∩ GI LPR 2−H) ⊆ (RG ∩ GI L2−H), (SRG ∩ GI LRE K−H) ⊆ (SRG ∩ GI LK−H).

Pruned Multi-Aggregation GNN: When l ≤ K :

M l ,k
v = AGG l

k({{H l−1
u |u ∈ Nk

path(v)}})(k ≤ l ≤ K ) (8)

Ml
v = (M l ,l

v ,M l ,l+1
v , · · · ,M l ,K

v ) (9)

H l
v = COB l

(
H l−1
v ,Ml

v

)
(10)

else when l > K :

M l ,K
v = AGG l

K ({{H l−1
u |u ∈ NK

path(v)}})
H l
v = COB l(H l−1

v ,M l ,K
v )

(11)
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The Pruning Weisfeiler-Lehman Algorithm

1: Input: Graph G = (V ,E ), number of iterations L.
2: Initialization: ∀v ∈ V , χ0(v), l = 0.
3: while l ≤ L do
4: l = l + 1, t = 1.
5: ml

1(v) = Hash({{χl−1(u) : u ∈ N(v)}}).
6: for ∀v ∈ V do
7: while t < 2l−1 do
8: t = t + 1.
9: ml

t(v) = Hash({{ml
t−1(u) : u ∈ N(v)}}).

10: end while
11: χl(v) = Hash(χl−1(v),ml

2l−1(v)).
12: end for
13: end while
14: Output: Final labels χL(v) for all v ∈ V .
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The Pruned Multi-Weisfeiler-Lehman Algorithm

1: Input: Graph G = (V ,E ,X ), number of iterations L.
2: Initialization: ∀v ∈ V , χ0(v), l = 0.
3: while l ≤ K do
4: l = l + 1.
5: for v ∈ V do
6: for t ∈ [l ,K ] do
7: χl

t(v) = Hash({{χl−1(u) : u ∈ Nt
t (v)}}).

8: end for
9: Xl (v) = (χl

l (v), χ
l
l+1(v), · · · , χ

l
K (v)).

χl (v) = Hash(χl−1(v),Xl (v)).
10: end for
11: end while
12: while l ≤ L do
13: l = l + 1.
14: for v ∈ V do
15: χl (v) = Hash(χl−1(v), {{χl−1(u) : u ∈ NL

path(v)}}).
16: end for
17: end while
18: Output: Final labels χL(v) for all v ∈ V .
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Process of WL Test on Long-refinement Graph
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Process of Pruned WL Test and Pruned 2-hop WL Test on
Long-refinement Graph
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Comparison on training efficiency

Table: Comparison on training efficiency

Model
COLLAB NCI1 IMDB-B IMDB-M MUTAG PROTEINS

Time Acc (%) Time Acc (%) Time Acc (%) Time Acc (%) Time Acc (%) Time Acc (%)

GIN(3) 1.104 74.8 ± 1.3 0.480 71.9 ± 0.5 0.251 71.9 ± 0.3 0.304 49.9 ± 0.0 0.889 89.4 ± 0.4 0.268 73.7 ± 0.7
PR GIN(1) 1.060 73.9 ± 0.0 0.461 72.9 ± 1.4 0.209 69.9 ± 2.0 0.284 50.6 ± 0.3 0.886 88.5 ± 0.0 0.233 72.2 ± 1.9

GIN(7) 1.638 77.4 ± 1.6 0.748 71.5 ± 1.4 0.578 72.6 ± 0.3 0.534 51.1 ± 0.3 0.904 89.4 ± 1.0 0.527 76.3 ± 0.2
PR GIN(124) 1.284 76.4 ± 0.7 0.6961 75.4 ± 0.2 0.481 71.7 ± 1.4 0.464 52.0 ± 0.5 0.916 92.0 ± 0.4 0.425 74.1 ± 1.0

GIN(10) 2.142 74.7 ± 0.6 1.122 75.9 ± 1.3 0.948 72.1 ± 2.8 0.898 49.7 ± 1.5 0.874 87.7 ± 0.2 0.867 72.3 ± 0.0
PR GIN(1234) 1.689 75.6 ± 0.3 0.981 74.7 ± 0.2 0.710 71.5 ± 0.5 0.780 51.2 ± 0.9 0.929 90.7 ± 2.1 0.667 72.5 ± 2.2

2-Hop(3) 1.357 76.8 ± 0.8 0.608 73.6 ± 0.9 0.410 71.0 ± 0.7 0.415 50.1 ± 1.5 0.910 91.0 ± 0.0 0.394 69.5 ± 1.3
PR 2-Hop(3) 1.180 75.1 ± 1.1 0.528 76.5 ± 1.6 0.357 71.5 ± 0.5 0.361 52.5 ± 0.7 0.929 91.3 ± 1.5 0.342 73.3 ± 0.3

2-Hop(5) 1.927 74.2 ± 0.5 0.880 70.6 ± 1.7 0.680 68.8 ± 0.8 0.628 49.5 ± 0.6 0.894 88.3 ± 1.0 0.621 71.0 ± 0.8
PR 2-Hop(5) 1.606 74.5 ± 0.4 0.734 71.1 ± 1.5 0.566 69.7 ± 0.2 0.523 48.0 ± 2.2 0.871 88.7 ± 1.5 0.517 72.0 ± 0.3

2-Path(3) 1.385 75.6 ± 0.0 0.620 73.0 ± 0.8 0.418 71.4 ± 0.1 0.423 49.5 ± 1.8 0.9045 88.7 ± 1.7 0.402 72.7 ± 2.0
PR 2-Path(3) 1.385 76.1 ± 0.3 0.632 75.5 ± 0.4 0.488 74.2 ± 1.9 0.451 51.6 ± 0.4 0.915 91.6 ± 0.0 0.446 76.9 ± 0.7

2-Path(5) 2.111 76.0 ± 0.2 0.964 74.2 ± 0.3 0.745 70.0 ± 0.6 0.688 51.3 ± 0.1 0.890 89.4 ± 0.4 0.680 69.3 ± 1.0
PR 2-Path(5) 1.730 72.1 ± 2.0 0.790 70.5 ± 2.3 0.610 71.8 ± 1.5 0.564 50.2 ± 0.2 0.898 88.9 ± 0.8 0.557 71.9 ± 2.4
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Thank You for Listening!
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