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Motivation

Hierarchical clustering reveals data structure at multiple scales
But classic methods can be highly sensitive to small input
changes [BLG14]1

This instability harms interpretability and reliability

Our goal: Analyze and minimize the expected change in clustering
output (symmetric difference) under perturbation

Original Points, D
Hierarchical Clustering Tree

After Removing a Point, D ′
Updated Clustering Tree

Stable?

1Balcan, Liang, and Gupta. “Robust hierarchical clustering”. In JMLR 2014



Average Sensitivity of Randomized Algorithms

Setup: Randomized algorithm A and dataset P ⊆ [0,Λ]d

Average sensitivity [VY21]2:

avgp∈P [dEM(A(P),A(P \ {p}))]

2Varma and Yoshida. “Average Sensitivity of Graph Algorithms”. In SODA 2021



Average Sensitivity of Randomized Algorithms

Earth Mover’s Distance (EMD):

dEM(A(P),A(P \ {p})) = min
D

E(S,S′)∼D
[
|S4S ′|

]
A(P), A(P \ {p}): distributions over clustering outputs
D: joint distribution with marginals matching each algorithm
output



Problem Formulation

Hierarchical k-median clustering
Input: Dataset P ⊆ [0,Λ]d
Output:

Centers: c1, . . . , cn
Clusters: P1, . . . ,Pk minimizing the k-median cost for all
k ∈ [n], i.e.

COST(P , {c1, . . . , ck}) = min
P1,...,Pk

∑
i∈[k]

∑
p∈Pi

‖p − ci‖

Perturbation model: Uniformly at random delete one point
p ∈ P

Goal: Design hierarchical k-median algorithms with provably low
average sensitivity



Our Contributions

Theorem (Main Theorem, informal)
Given a point set P of size n and a parameter ε > 0, our algorithm
computes a hierarchical k-median clustering for all k ∈ {1, . . . , n}
with:

Expected cost:

E[COSTT (P ,Sk)] ≤ O(d log Λ · (1 + ε)k) ·OPT(P , k)

Average sensitivity: O
(k ln n

ε

)
Success probability: ≥ 1− k

n2

Running time: O(dn log Λ + n3)

Here, Sk is the level-k center set, and COSTT (P ,Sk) is the clustering
cost on RHST tree T .



Our Contributions

We prove lower bounds on the average sensitivity of Single Linkage
and deterministic CLNSS [CLN+21]3.

Lemma (Single Linkage)
The average sensitivity of Single Linkage is at least Ω(n).

Lemma (Deterministic CLNSS)
The average sensitivity of the deterministic CLNSS algorithm is at
least Ω(n).

3Cohen-Addad et al. “Parallel and efficient hierarchical k-median clustering”. In
NeurIPS 2021



Our Algorithm

Low-Sensitivity Hierarchical k-Median Algorithm
Input: A set of points P
Output: Centers c1, . . . , cn, clusterings P1, . . . ,Pn

1 Apply a random shift to each point in P .
2 Construct a 2-RHSTa tree T .
3 Initialize S0 ← ∅, P0 ← {P}.
4 Label all internal nodes of the RHST as unlabelled.
5 For t = 1 to n, do the following:

1 Sample λ from a dataset-dependent interval.
2 Sample ct with probability ∝ exp (−COSTT (P , x ∪ St−1)/λ).
3 Label the highest unlabelled ancestor of ct with ct .
4 Update St ← ct ∪ St−1.
5 Define Pt by assigning points to closest labelled ancestor.

aRestricted 2-hierarchically well-separated tree (2-RHST)



Experimental Setup

Datasets: Synthetic and real-world (Scikit-learn , UCI
Repository )
Baselines:

Hierarchical methods: single, complete, average, Ward’s
CLNSS algorithm

Metrics:
Average sensitivity (robustness to deletions)
Clustering cost (e.g., k-median)
Effect of ε (randomness impact)



Experimental Results on Synthetic Datasets

Left and middle: average sensitivity of Single Linkage and CLNSS
(vs others) on synthetic datasets to show the lower bounds.

Right: results on a synthehtic regression dataset with 500 points.



Experimental Results on Real-World Datasets

k-Median Cost: Comparison across algorithms for varying k on
real datasets.

Average Sensitivity (k = 4): Slightly worse than single linkage,
but better than all other methods.



Thank you!


