Average Sensitivity of Hierarchical k-Median Clustering

Shijie Li¹ Weiqiang He¹ Ruobing Bai¹ Pan Peng¹

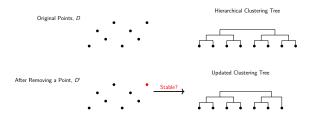
School of Computer Science and Technology, University of Science and Technology of China

ICML 2025

Motivation

- Hierarchical clustering reveals data structure at multiple scales
- \bullet But classic methods can be highly sensitive to small input changes $[{\rm BLG14}]^1$
- This instability harms interpretability and reliability

Our goal: Analyze and minimize the expected change in clustering output (symmetric difference) under perturbation

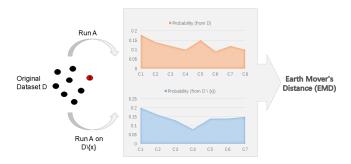


¹Balcan, Liang, and Gupta. "Robust hierarchical clustering". In JMLR 2014

Average Sensitivity of Randomized Algorithms

Setup: Randomized algorithm A and dataset $P \subseteq [0, \Lambda]^d$ **Average sensitivity** [VY21]²:

$$\mathsf{avg}_{p \in P}\left[d_{\mathrm{EM}}(A(P), A(P \setminus \{p\}))\right]$$



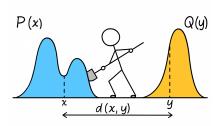
²Varma and Yoshida. "Average Sensitivity of Graph Algorithms". In SODA 2021

Average Sensitivity of Randomized Algorithms

Earth Mover's Distance (EMD):

$$d_{\mathrm{EM}}(A(P),A(P\setminus\{p\}))=\min_{D}\;\mathbb{E}_{(S,S')\sim D}\left[|S\triangle S'|\right]$$

- A(P), $A(P \setminus \{p\})$: distributions over clustering outputs
- D: joint distribution with marginals matching each algorithm output



Problem Formulation

Hierarchical k-median clustering

- Input: Dataset $P \subseteq [0, \Lambda]^d$
- Output:
 - Centers: c_1, \ldots, c_n
 - Clusters: P_1, \ldots, P_k minimizing the k-median cost for all $k \in [n]$, i.e.

$$COST(P, \{c_1, ..., c_k\}) = \min_{P_1, ..., P_k} \sum_{i \in [k]} \sum_{p \in P_i} ||p - c_i||$$

• Perturbation model: Uniformly at random delete one point $p \in P$

Goal: Design hierarchical k-median algorithms with **provably low** average sensitivity

Our Contributions

Theorem (Main Theorem, informal)

Given a point set P of size n and a parameter $\varepsilon > 0$, our algorithm computes a hierarchical k-median clustering for all $k \in \{1, \ldots, n\}$ with:

• Expected cost:

$$\mathbb{E}[\text{COST}_{\mathcal{T}}(P, S_k)] \leq O(d \log \Lambda \cdot (1 + \varepsilon)^k) \cdot \text{OPT}(P, k)$$

- Average sensitivity: $O\left(\frac{k \ln n}{\varepsilon}\right)$
- Success probability: $\geq 1 \frac{k}{n^2}$
- Running time: $O(dn \log \Lambda + n^3)$

Here, S_k is the level-k center set, and $COST_T(P, S_k)$ is the clustering cost on RHST tree T.

Our Contributions

We prove lower bounds on the average sensitivity of Single Linkage and deterministic CLNSS $[{\rm CLN}+21]^3$.

Lemma (Single Linkage)

The average sensitivity of Single Linkage is at least $\Omega(n)$.

Lemma (Deterministic CLNSS)

The average sensitivity of the deterministic CLNSS algorithm is at least $\Omega(n)$.

³Cohen-Addad et al. "Parallel and efficient hierarchical k-median clustering". In NeurIPS 2021

Our Algorithm

Low-Sensitivity Hierarchical k-Median Algorithm

Input: A set of points *P*

Output: Centers c_1, \ldots, c_n , clusterings $\mathcal{P}_1, \ldots, \mathcal{P}_n$

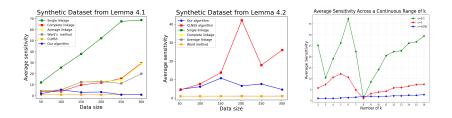
- **1** Apply a random shift to each point in P.
- ② Construct a 2-RHST a tree T.
- **③** Initialize $S_0 \leftarrow \emptyset$, $P_0 \leftarrow \{P\}$.
- Label all internal nodes of the RHST as unlabelled.
- **5** For t = 1 to n, do the following:
 - $\textbf{ 0} \ \, \mathsf{Sample} \,\, \lambda \,\, \mathsf{from} \,\, \mathsf{a} \,\, \mathsf{dataset-dependent} \,\, \mathsf{interval}.$
 - **2** Sample c_t with probability $\propto \exp\left(-\text{COST}_T(P, x \cup S_{t-1})/\lambda\right)$.
 - 3 Label the highest unlabelled ancestor of c_t with c_t .
 - **④** Update $S_t \leftarrow c_t \cup S_{t-1}$.
 - **5** Define \mathcal{P}_t by assigning points to closest labelled ancestor.

^aRestricted 2-hierarchically well-separated tree (2-RHST)

Experimental Setup

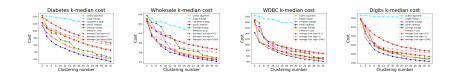
- Datasets: Synthetic and real-world (Scikit-learn, UCI Repository)
- Baselines:
 - Hierarchical methods: single, complete, average, Ward's
 - CLNSS algorithm
- Metrics:
 - Average sensitivity (robustness to deletions)
 - Clustering cost (e.g., k-median)
 - Effect of ε (randomness impact)

Experimental Results on Synthetic Datasets

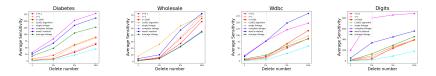


- Left and middle: average sensitivity of Single Linkage and CLNSS (vs others) on synthetic datasets to show the lower bounds.
- Right: results on a synthehtic regression dataset with 500 points.

Experimental Results on Real-World Datasets



 k-Median Cost: Comparison across algorithms for varying k on real datasets.



• Average Sensitivity (k = 4): Slightly worse than single linkage, but better than all other methods.

Thank you!