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@ Hierarchical clustering reveals data structure at multiple scales

@ But classic methods can be highly sensitive to small input
changes [BLG14]*

@ This instability harms interpretability and reliability

Our goal: Analyze and minimize the expected change in clustering
output (symmetric difference) under perturbation
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Average Sensitivity of Randomized Algorithms

Setup: Randomized algorithm A and dataset P C [0, A]?
Average sensitivity [VY21]?:
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Average Sensitivity of Randomized Algorithms

Earth Mover’s Distance (EMD):

den(A(P), A(P\ {p})) = min E(s s)p [|SAS']]

e A(P), A(P\ {p}): distributions over clustering outputs

@ D: joint distribution with marginals matching each algorithm
output
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Problem Formulation

Hierarchical k-median clustering
o Input: Dataset P C [0, A]

o Output:
e Centers: ¢1,...,¢p
o Clusters: Pi,..., Px minimizing the k-median cost for all
k € [n], ie.
COST(P, {1, - ck}) = jmin, > > llp—cil
IE[k] peP;

@ Perturbation model: Uniformly at random delete one point
peP

Goal: Design hierarchical k-median algorithms with provably low
average sensitivity



Our Contributions

Theorem (Main Theorem, informal)

Given a point set P of size n and a parameter € > 0, our algorithm

computes a hierarchical k-median clustering for all k € {1, ..., n}
with:

@ Expected cost:

E[COST7(P, Sk)] < O(dlogA - (1 +¢)¥) - OPT(P, k)

@ Average sensitivity: O (%)

@ Success probability: > 1 — n—"2
o Running time: O(dnlog A + n®)

Here, Sy is the level-k center set, and COST (P, Si) is the clustering
cost on RHST tree T.



Our Contributions

We prove lower bounds on the average sensitivity of Single Linkage
and deterministic CLNSS [CLN+21]3.

Lemma (Single Linkage)

The average sensitivity of Single Linkage is at least Q(n).

Lemma (Deterministic CLNSS)

The average sensitivity of the deterministic CLNSS algorithm is at
least Q(n).

3Cohen-Addad et al. “Parallel and efficient hierarchical k-median clustering”. In
NeurlPS 2021



Our Algorithm

Low-Sensitivity Hierarchical k-Median Algorithm

Input: A set of points P
Output: Centers cy, . .., ¢y, clusterings P1,..., P,
© Apply a random shift to each point in P.
@ Construct a 2-RHST? tree T.
Q Initialize So - 0, Py + {P}.
@ Label all internal nodes of the RHST as unlabelled.

© For t =1 to n, do the following:

@ Sample )\ from a dataset-dependent interval.

® Sample ¢; with probability o< exp (—COST (P, x U S;_1)/A).
@ Label the highest unlabelled ancestor of ¢; with ¢;.

@ Update S; < ¢c; US; 1.

© Define P; by assigning points to closest labelled ancestor.

“Restricted 2-hierarchically well-separated tree (2-RHST)



Experimental Setup

e Datasets: Synthetic and real-world (Scikit-learn , UCI
Repository )
o Baselines:
o Hierarchical methods: single, complete, average, Ward's
o CLNSS algorithm
o Metrics:

o Average sensitivity (robustness to deletions)
o Clustering cost (e.g., k-median)
o Effect of € (randomness impact)



Experimental Results on Sy
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@ Left and middle: average sensitivity of Single Linkage and CLNSS
(vs others) on synthetic datasets to show the lower bounds.

@ Right: results on a synthehtic regression dataset with 500 points.



Experimental Results on Real-World Datasets

Diabetes k-medi:
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@ k-Median Cost: Comparison across algorithms for varying k on
real datasets.
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@ Average Sensitivity (k = 4): Slightly worse than single linkage,
but better than all other methods.
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