
Large Language Models (LLMs) have revolutionized various natural
language processing tasks with their remarkable capabilities.
However, a challenge persists in effectively processing new
information, particularly in the area of long-term knowledge updates
without compromising model performance. This paper introduces a
novel memory augmentation framework that conceptualizes memory
as a peripheral component (akin to physical RAM), with the LLM
serving as the information processor (analogous to a CPU). Memory is
designed as a sequence of memory banks, each modeled using
Kolmogorov-Arnold Network (KAN) to ensure smooth state transitions.

Motivation

Overall Framework (LLM + Peripheral Memory)

The peripheral memory is composed of two components: memory
banks to store data and the confidence bank to evaluate the
relevance between the query feature and the retrieved information.
The number of memory banks determine the memory bandwidth.
Moreover, these banks are interconnected with each other, i.e., the
output of the one bank will be regarded as the input of the next one.

Peripheral Memory

Editing performance of all compared methods under 3K consecutive editing. For our model, query features are derived from the last token hidden
states in model’s 24-th layer. Three fundamental metrics are used to evaluate model performance, including Efficacy,Generality, and Locality.

Experimental Results on Knowledge-based Model Editing Task

To further investigate the effects of long-term editing, we conduct
experiments by increasing the number of reads and writes in memory
from 1K to 10K, and analyzing. The following figures present the results

of our methods compared to several strong memory-based methods
(including working & implicit memory) across varying numbers of edits.

Memory Sharing

The peripheral memory endows our method with an advantage, i.e.,
reusability. This follows the principle: store once, use everywhere. The
following tables present the results of 1K memory sharing, where
knowledge is first stored using Llama3 (8B) and then transferred to two
different LLMs: including Gemma2-it (2B) and Phi3 (3.8B).
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Our peripheral memory decouples the memory module from the LLM, treating it as an independent storage component. In this design, the content
stored in memory is treated as a dynamic variable, allowing the LLM to dynamically retrieve or write the necessary information as needed. The
following figure illustrates the overall framework. The memory is connected to the LLM through a specialized converter, which acts like signal cables
to facilitate feature conversion between the two components. Memory operations are driven by the hidden state of the last token from the LLM
(serves as the query signal), and the query result is then integrated into the LLM as a prefix, enhancing the generation process.
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Memory Read & Write

Before reading from a peripheral memory, we first plug it into an LLM.
Then, a query feature from the LLM is used to retrieve the memory:

𝒕∗
𝑙 = 𝜎 𝛼 ∙ 𝒕∗ = 𝜎 𝛼 ∙ {ℳ((𝒕∗

𝑙 )⊺𝑾0)
⊺𝑾1}

𝑾0converts the token feature into the query signal, acting as the
outlet cable. Similarly, 𝑾1maps the memory data into the memory
feature adapted to LLM hidden feature space, which can be
understood as the leading in cable. This allows the memory and the
LLM to be used effectively as a unified system. As such, the memory
writing could be simply achieved by performing a fine-tuning process
with setting requiring gradients of the memory.

Editor
ZsRE (Levy et al., 2017) CounterFact (Meng et al., 2022)

Efficacy Generality Locality Score Efficacy Generality Locality Score

Llama3 (8B) 0.2627 0.2598 / 0.2613 0.0087 0.0075 / 0.0081

FT-L            2020 0.0769 0.0666 0.0069 0.0501 0.0575 0.0047 0.0013 0.0212

LoRA 2022 0.1145 0.1116 0.0535 0.0932 0.0077 0.0117 0.0017 0.0070

ROME        2022 0.0339 0.0280 0.0015 0.0211 0.2507 0.1323 0.0097 0.1309

R-ROME    2024 0.0271 0.0243 0.0035 0.0183 0.4892 0.3662 0.0147 0.2900

MEMIT      2023 0.0000 0.0000 0.0396 0.0132 0.0000 0.0000 0.0722 0.0241

AlphaEdit 2025 0.0001 0.0000 0.0003 0.0001 0.0033 0.0017 0.0007 0.0019

PMET         2024 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EMMET      2024 0.0517 0.0486 0.0043 0.0349 0.5450 0.3882 0.0128 0.3153

GRACE      2023 0.0624 0.0095 1.0000 0.3573 0.0003 0.0000 0.9938 0.3314

IKE              2023 0.5233 0.5231 0.5289 0.5251 0.0055 0.0043 0.6509 0.2202

WISE           2024 0.3348 0.3283 0.9997 0.5543 0.1473 0.0763 0.9907 0.4048

Ours -1K archive 0.9597 0.5619 1.0000 0.8405 0.9038 0.2168 1.0000 0.7069

Ours +1K archive 0.9805 0.6123 1.0000 0.8643 0.9915 0.3108 1.0000 0.7674

Models on ZsRE Efficacy Generality Locality Score

Llama3 (8B) 0.9907 0.6090 1.0000 0.8666

Gemma2-it (2B)
0.9918 0.6989 1.0000 0.8969

0.9713 0.6635 1.0000 0.8783

Phi3 (3.8B)
1.0000 0.6547 1.0000 0.8849

0.0000 0.0000 1.0000 0.3333

Models on CounterFact Efficacy Generality Locality Score

Llama3 (8B) 0.9990 0.3150 1.0000 0.7713

Gemma2-it (2B)
0.9890 0.1948 1.0000 0.7279

0.9790 0.2045 1.0000 0.7278

Phi3 (3.8B)
0.9997 0.2875 1.0000 0.7624

0.9997 0.3075 1.0000 0.7691

In this paper, we directly utilize
hidden-layer representation as
query features. While this
design makes efficient retrieval,
it faces well-known challenge:
hypersensitivity to minor input
variations → limited generality.
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