
Understanding Complexity in VideoQA
via Visual Program Generation

Cristobal Eyzaguirre, Igor Vasiljevic, Achal Dave, Jiajun Wu,
Rares Andrei Ambrus, Thomas Kollar, Juan Carlos Niebles, Pavel Tokmakov

ICML 2025

Questions can be of varying complexity

Is there a piano in the
beginning?

Who was the first to play the piano
in the video?

What was the teacher doing while he
was playing the piano for the first time?

Is there a piano in the
beginning?

Who was the first to play the piano
in the video?

What was the teacher doing while he
was playing the piano for the first time?

Estimating Question Complexity

Estimating Question Complexity
Is there a piano in the
beginning?

Who was the first to play the piano
in the video?

What was the teacher doing while he
was playing the piano for the first time?

def execute_command(video, possible_answers, question):
 video_segment = VideoSegment(video)
 first_frame = ImagePatch(video_segment, 0)
 piano_detected = first_frame.detect_object('piano')
 info = {
 'Piano detected in the first frame': piano_detected
 }
 answer = video_segment.answer_question(info, question, possible_answers)
 return answer, info

def execute_command(video, possible_answers, question):
 video_segment = VideoSegment(video)
 frame_of_interest = None
 for (i, frame) in enumerate(video_segment.frame_iterator()):
 if frame.detect_object('student') and \
 frame.simple_qa('is the student playing the piano?') == 'yes':
 frame_of_interest = frame
 break
 frame_of_interest_description = frame_of_interest.caption()
 info = {
 'Description of frame when piano is played for the first time ': \
 frame_of_interest_description
 }
 answer = video_segment.answer_question(info, question, possible_answers)
 return answer, info

def execute_command(video, possible_answers, question):
 video_segment = VideoSegment(video)
 student_playing = False
 frame_of_interest = None
 for (i, frame) in enumerate(video_segment.frame_iterator()):
 if frame.detect_object('student') and \
 frame.simple_qa('is the student playing the piano?') == 'yes':
 student_playing = True
 elif student_playing and frame.detect_object('teacher'):
 frame_of_interest = frame
 break
 description = frame_of_interest.caption()
 info = {
 'Description of frame while student plays the piano ': \
 description,
 }
 answer = video_segment.answer_question(info, question, possible_answers)
 return answer, info

Is there a piano in the
beginning?

Estimating Question Complexity

Is there a piano in the
beginning?

Is there a piano in the
beginning?

def execute_command(video, possible_answers, question):
 video_segment = VideoSegment(video)
 first_frame = ImagePatch(video_segment, 0)
 piano_detected = first_frame.detect_object('piano')
 info = {
 'Piano detected in the first frame': piano_detected
 }
 answer = video_segment.answer_question(info, question, possible_answers)
 return answer, info

Complexity

Complexity

Query: What was the teacher
doing while he was playing the
piano for the first time?

CodePlexity

Query: What was the
teacher doing while he
was playing the piano for
the first time?

CodePlexity
def execute_command(video, possible_answers, question):
 video_segment = VideoSegment(video)
 student_playing = False
 frame_of_interest = None
 for frame in enumerate(video_segment.frame_iterator()):
 if frame.detect_object("student") and \
 frame.simple_qa("Is the student playing the piano?") == "yes":
 student_playing = True
 elif student_playing and frame.detect_object("teacher"):
 frame_of_interest = frame
 break
 description = frame_of_interest.caption()
 info = {
 "Description of frame while student playing piano ": description
 }
 answer = video_segment.answer_question(info, question, possible_answers)
 return answer, info

Code
Generation

Query: What was the
teacher doing while he
was playing the piano for
the first time?

CodePlexity

Code
Generation

AST
Generation

def execute_command(video, possible_answers, question):
 video_segment = VideoSegment(video)
 student_playing = False
 frame_of_interest = None
 for frame in enumerate(video_segment.frame_iterator()):
 if frame.detect_object("student") and \
 frame.simple_qa("Is the student playing the piano?") == "yes":
 student_playing = True
 elif student_playing and frame.detect_object("teacher"):
 frame_of_interest = frame
 break
 description = frame_of_interest.caption()
 info = {
 "Description of frame while student playing piano ": description
 }
 answer = video_segment.answer_question(info, question, possible_answers)
 return answer, info

Query: What was the
teacher doing while he
was playing the piano for
the first time?

CodePlexity

def execute_command(video, possible_answers, question):
 video_segment = VideoSegment(video)
 student_playing = False
 frame_of_interest = None
 for frame in enumerate(video_segment.frame_iterator()):
 if frame.detect_object("student") and \
 frame.simple_qa("Is the student playing the piano?") == "yes":
 student_playing = True
 elif student_playing and frame.detect_object("teacher"):
 frame_of_interest = frame
 break
 description = frame_of_interest.caption()
 info = {
 "Description of frame while student playing piano ": description
 }
 answer = video_segment.answer_question(info, question, possible_answers)
 return answer, info

Expr enumerate() video_segment.frame_iterator()

1

1

1

0

Code
Generation

AST
Generation

Subtree
Encoding

Query: What was the
teacher doing while he
was playing the piano for
the first time?

CodePlexity

def execute_command(video, possible_answers, question):
 video_segment = VideoSegment(video)
 student_playing = False
 frame_of_interest = None
 for frame in enumerate(video_segment.frame_iterator()):
 if frame.detect_object("student") and \
 frame.simple_qa("Is the student playing the piano?") == "yes":
 student_playing = True
 elif student_playing and frame.detect_object("teacher"):
 frame_of_interest = frame
 break
 description = frame_of_interest.caption()
 info = {
 "Description of frame while student playing piano ": description
 }
 answer = video_segment.answer_question(info, question, possible_answers)
 return answer, info

Expr enumerate() video_segment.frame_iterator()

1

1

1

0
CodePlexity

Code
Generation

AST
Generation

Subtree
Encoding

Complexity
Estimation

CodePlexity

Analysis

QUERY: What did the
man sitting on top do
after he came off the
person on the ground?

Analysis

QUERY: What did the
man sitting on top do
after he came off the
person on the ground?

Generating a Hard dataset

CodePlex-QA Generations are all complex:

What does the waiter do
after taking orders from the
customers?

What action does the barber
do to the customer multiple
times in the video?

Who was the first to play the
piano in the video?

What was the person's
reaction after picking up the
broom?

Who was the first person to
walk during the
conversation?

What is the man wearing
while riding the camel?

What is the person holding
while reading the book?

What happens to the cards
after they are split into four?

What action is performed by
the salon worker after filing
the customer's nails?

What is the man holding
after he stands up?

What is the man in the blue
shirt doing most of the time?

What is the patient doing
after standing up from the
bed?

What does the person do
after sneezing?

Who did the driver talk to at
the end of the video?

What is the man in the
tuxedo doing during the
cheering?

1. We demonstrate that generated code complexity can serve as a robust metric of
question complexity in VideoQA and propose a novel approach for automatically
quantifying it.

2. We present CodePlexity, a novel approach that identifies the key sources of
complexity for existing VideoQA models.

3. Using CodePlexity, we automatically construct CodePlexQA, a novel benchmark
that is challenging for VideoQA methods.

Summary of Contributions

	Slide 1: Understanding Complexity in VideoQA via Visual Program Generation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

