Targeted control of fast prototyping through domain-specific interface Yu-Zhe Shi^{1,2}, Mingchen Liu³, Hanlu Ma⁴, Qiao Xu¹, Huamin Qu^{2,4}, Kun He³, Lecheng Ruan¹, Qining Wang¹ ¹Department of Advanced Manufacturing and Robotics, Peking University ²Department of Computer Science and Engineering, The Hong Kong University of Science and Technology ³School of Computer Science and Technology, Huazhong University of Science and Technology ⁴Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology ## Designers' language vs. modeling language ## Representation and domain adaptation ## Representation and domain adaptation ## Representation and domain adaptation #### Running status of the domain adaptation algorithm ## Running status of the domain adaptation algorithm ## Results of the targeted control assessment ## Results of the targeted control assessment ## Results of the targeted control assessment ## Resulting models of the fast prototyping #### **Takeaways** We identify the problem of the targeted control of fast prototyping through the gaps between the designers' and modeling languages. #### **Takeaways** We identify the problem of the targeted control of fast prototyping through the gaps between the designers' and modeling languages. We propose an interface as a medium between the two languages, and develop an algorithm for its automated domain specification. #### **Takeaways** We identify the problem of the targeted control of fast prototyping through the gaps between the designers' and modeling languages. We propose an interface as a medium between the two languages, and develop an algorithm for its automated domain specification. Our approach has the potential to function as an auxiliary module for LLMs, enabling precise and effective targeted control of prototypes. Thank you!