

Geometric and Physical Constraints Synergistically Enhance Neural PDE Surrogates

Yunfei Huang, David S. Greenberg

Helmholtz Centre Hereon, Geesthacht, Germany; Helmholtz Al

Project website

Scientific question?

Approaches to solving PDEs:

Numerical methods (traditional);

Machine Learning (ML) Models (recent)

Challenges of ML model: Accurate long-term rollout; Generalization

PDEs fundamental assumptions: Symmetry and physical constraints

Previous ML Models

Related Works	symmetry constraint	physical constraint
Wandel et al. ICLR, 2021	×	V
Wang et al. ICLR, 2021	/	×

Incompressible
Navier–Stokes equation (INS)

Our scientific question:

Would it be useful to combine the two constraints with the C-grid for the ML model, or would that be redundant?

Symmetry- and physics-constrained neural surrogate

Symmetry- and physics-constrained neural surrogate

Experiments

Shallow Water Equations (SWEs)

		Symmetries			
Conservation laws					
None Ø	p1/Ø	p4/Ø	p4m/∅		
Mass M	p1/M	p4/M	p4m/M		

Incompressible Navier–Stokes (INS) Decaying Turbulence

	Symmetries		
Conservation laws			回り単
None Ø	p1/Ø	p4/Ø	p4m/Ø
Momentum $\rho \vec{u}$	p1/ $ ho ec{u}$	p4/ $ ho ec{u}$	p4m/ $ ho ec{u}$
Mass/momentum M+ $\rho \vec{u}$	p1/M+ $ ho ec{u}$	p4/M+ $ ho ec{u}$	p4m/M+ $ ho ec{u}$

Our model outperforms other networks on SWEs and INS

Prediction of p4m/M for SWEs

0.2h 2h 10h 25h 50h reference

Prediction of p4m/M+pu for INS

Generalization beyond training data

Conclusion

We developed a double-constrained model with input and output layers on C-grids.

We found that symmetries are more effective than physical constraints, but combining both is best.

We found our model can improve predictions in terms of generalisation and the real ocean data.

Project website

