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The Problem to Solve

We propose a novel method, namely Gaussian Smoothing with a
Power-Transformed Objective (GS-PowerOpt), that solves the following
continuous optimization problems

max
x∈S⊂Rd

f (x), (1)

where S is a compact set and f : S → R is a continuous and possibly
non-concave function with a unique global maximum point
x∗ = arg maxx∈S f (x).

Chen Xu Department of Engineering, Shenzhen MSU-BIT University, China. GS-PowerOpt. ICML, 2025.



Introduction Existing Methods Contribution GS-PowerOpt Experiments Conclusion References

Gradient-Based Methods

The gradient-based methods (e.g., stochastic gradient ascent) are the most
popular ones. However,

• they require the derivative of f ; and
• they are likely to be trapped in local optimum points ([11], [9], [4]).
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Evolutionary Algorithms

• (Advantage) The evolutionary algorithms, such as symmetric annealing
([15]), particle swarm optimization ([12]), and CMA-ES ([6]), do not
require the derivative of f , and may avoid local optimums.

• (Drawback) However, they suffer from the curse of dimensionality.

• (Drawback) The convergence theories are not complete for most EA
algorithms.
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Global Optimization with Gaussian Smoothing

Gaussian smoothing refers to convolving the objective f with a Gaussian
density N (µ, σ2Id):

f̂σ(µ) : = 1
(
√

2πσ)d

∫
x∈Rd

f (x)e− ∥x−µ∥2

2σ2 dx

= Ex∼N (µ,σ2Id )[f (x)].

• This conversion possibly smooth out local extremes of f .
• It is applied by a category of intensively studied methods named

homotopy for optimization (e.g., [1], [13], [7], [8], [10]).
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Standard Homotopy

The standard homotopy (e.g., [7]) creates a schedule {σj} → 0, solve
µ∗

0 := arg maxµ f̂σ0 (µ), and performs the following double-loop mechanism:
1. Let µ∗

j be the starting point for solving maxµ f̂σj+1 (µ) (outer loop for j).

2. Solve µ∗
j+1 := arg maxµ f̂σj+1 (µ) (inner loop);

µ∗
∞ = x∗ := arg maxx f (x) (e.g., [7]).
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Single-loop Gaussian Homotopy (SLGH)

• The double-loop mechanism in the standard homotopy is costly in time.
• (Advantage) To tackle this issue, SLGH ([8]) applies a single-loop

mechanism. Specifically, it updates µ and σ in each iteration.
• (Drawback) In theory, SLGH is only guaranteed to locate optimum that is

possibly local.
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Advantage of the Proposed Method: GS-PowerOpt

• Our proposed algorithm, GS-PowerOpt, is significantly faster than the
standard homotopy method for optimization, both empirically and
theoretically (O(d2ϵ−2) versus O(d2ϵ−4) in iteration complexity).

• In theory, GS-PowerOpt is able to approximate the global optimum point
x∗, while SLGH is only guaranteed to locate optimum that is possibly
local.

Chen Xu Department of Engineering, Shenzhen MSU-BIT University, China. GS-PowerOpt. ICML, 2025.



Introduction Existing Methods Contribution GS-PowerOpt Experiments Conclusion References

Motivation

• From a few examples, we have found that if we modify the objective f to
increase the gap between f (x∗) and the f -value at other points, its
Gaussian smooth will have a unique global maximum µ∗.

• If the gap continues to increase, µ∗ gets closer to x∗ := arg maxx f (x).
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Illustration of the Motivation

• Define fN(x) := eNf (x).
• The gap fN(x∗) − fN(x) is enlarged

by increasing N.
• Gaussian smooth:

FN,σ(µ) := Ex∼N (µ,σ2)[fN(x)],
where σ = 0.5.

The right figure show that
• FN,σ(µ) has a unique maximum

µ∗.
• As we enlarge the gap

fN(x∗) − fN(x) (i.e., increases N),
µ∗ approaches
x∗ := arg maxx f (x).

f (µ) = − log((µ + 0.5)2 + 10−5) −
log((µ − 0.5)2 + 10−2) + 10 for |µ| ≤ 1
and f (µ) = 0 for |µ| > 1;
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Figure: Graphs of f (µ) and FN,σ(µ). All
function graphs are scaled to have a
maximum value of 1 for easier
comparisons.
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The Inspired Scheme for Finding x∗

From the previous example, µ∗ := arg maxµ FN,σ(µ) approaches x∗ as we
increase N. Therefore, the inspired method for finding x∗ is through finding µ∗

under a large value of N.
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Theoretical Justification of the Motivation

According to Lemma 3.4 in our paper, for any σ > 0 and δ > 0, as long as N is
sufficiently large (depends on σ and δ), all the maximum points of FN,σ(µ) lie
in a δ-neighborhood of x∗.
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Updating Rule of GS-PowerOpt

Since µ∗ := arg maxµ FN,σ(µ) is close to x∗ for sufficiently large N,
GS-PowerOpt solves the surrogate objective

µ∗ := arg max
µ

FN,σ(µ),

where N is pre-selected (it is treated as a hyper-parameter). Stochastic
gradient ascent is used to solve this objective:

GS-PowerOpt : µt+1 = µt + αt∇̂FN,σ(µt), (2)

where ∇̂FN,σ(µt) := 1
K

∑K
k=1(xk − µt)fN(xk), and {xk}K

k=1 are independently
sampled from the multivariate Gaussian distribution N (µt , σ2Id).

Chen Xu Department of Engineering, Shenzhen MSU-BIT University, China. GS-PowerOpt. ICML, 2025.



Introduction Existing Methods Contribution GS-PowerOpt Experiments Conclusion References

A Flowchart of GS-PowerOpt
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What’s New

To our knowledge, this is the first work that proposes the idea2 of putting
sufficiently large weight on the global maximum values of the objective, to
decrease the distance between the optimum point before and after Gaussian
smoothing (i.e., ∥x∗ − µ∗∥).

2[5, 14, 3], which involve power transforms, have not mentioned this idea.
Chen Xu Department of Engineering, Shenzhen MSU-BIT University, China. GS-PowerOpt. ICML, 2025.
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Convergence Analysis

• Let {µt} denote the sequence produced by the GS-PowerOpt updating
equation

GS-PowerOpt : µt+1 = µt + αt∇̂FN,σ(µt).
• Let νt denote the point in {µτ }t

τ=0 that minimizes E[∥∇FN,σ(µt)∥2].
• According to Corollary 3.9, limt→∞ E[∥∇FN,σ(νt)∥2] = 0, with an iteration

complexity of ON(d4ϵ−2). Hence, ν∞ is a stationary point of FN,σ.
• From Lemma 3.4, for any σ > 0 and arbitrarily small δ > 0, there exists a

sufficiently large N such that any stationary point of FN,σ(µ) lies in a
δ-neighborhood of x∗.

• Hence, ν∞ lies in a δ-neighborhood of x∗.
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Stronger Results under Additional Assumptions

• From Proposition 3.11, the iteration complexity reduces to ON(d2ϵ−2) if
we additionally assume the Lipschitz conditions on f and its derivative ∇f :

|f (x) − f (y)| ≤ L0∥x − y∥, ∥∇f (x) − ∇f (y)∥ ≤ L1∥x − y∥.

• From Corollary 4.2, the iteration complexity’s dependence on N can be
removed if we further assume that f (x) ∈ [0, 1) if we set fN = f N , and
f (x) < 0 if we set fN = eNf .
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(Exponential) Power Gaussian Smoothing

• The only difference between GS-PowerOpt and the two designed
algorithms, the power Gaussian smoothing (PGS) and the exponential
power Gaussian smoothing (EPGS), is that PGS and EPGS update µt
with the normalized gradient estimate, i.e.,

µt+1 = µt + αt∇̂FN,σ(µt)/∥∇̂FN,σ(µt)∥.

• For PGS, fN(x) = f N(x) (applied only for a non-negative objective f ).
• For EPGS, fN(x) = eNf (x).
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Algorithm PGS/EPGS
1: Input: The power N > 0, the scaling parameter σ > 0, the objective f , the

initial value µ0, the number K of sampled points for gradient approximation,
the total number T of µ-updates, and the learning rate schedule {αt}T

t=1.
2: for t from 0 to T − 1 do
3: Independently sample from N (µt , σ2Id) and obtain {xk}K

k=1.
4: µt+1 = µt + αt∇̂FN,σ(µt)/∥∇̂FN,σ(µt)∥.
5: end for
6: Return {µt}N

t=1, from which µ∗ is selected to approximate x∗ (e.g., µ∗ :=
arg maxt∈{1,2,...,T} f (µt)).
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Benchmark 2D Objectives to be Optimized
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Figure: Graph of the Benchmark Objective Functions.
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Experiment on Optimizing the Two-log Objective
Obj. f (x) = − log(∥x − m1∥2 + 10−5) − log(∥x − m2∥2 + 10−2).
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Figure: Effects of Increasing N. We apply PGS/EPGS to solve an example problem
maxx f (x). The output from PGS/EPGS is denoted by µ, and the global optimum of
f is denoted by m1. The graph shows that the result improves as N increases.
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Experiment on Optimizing Ackley

Obj. f (x , y) = 20e−0.2
√

0.5(x2+y2) + e0.5(cos(2πx)+cos(2πy)).

Table: Performances on Maximizing Ackley. “Iter. Taken” refers to the number of
iterations taken to reach the best found solution. The true solution x∗ = (0, 0).

Algorithm Iter.
Taken

Best Solution Found
(µ∗)

f (µ∗)

CMA-ES 116 (0.0, 0.0) 22.718
EPGS (N = 1) 143 (0.001, 0.0) 22.683
PGS (N = 20) 141 (0.001, 0.002) 22.678
ZOSLGHr 131 (0.001, −0.002) 22.621
ZOAdaMM 158 (0.005, 0.001) 22.613
ZOSLGHd 123 (−0.003, −0.001) 22.61
ZOSGD 174 (0.005, 0.007) 22.596
STD-Homotopy 194 (0.962, 0.946) 17.58
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Experiment on Optimizing Rosenbrock

Obj. f (x , y) = −100(y − x2)2 − (1 − x)2.

Table: Performances on Maximizing Rosenbrock. For PGS, the Rosenbrock is added
by 20, 000 to ensure the search agent only encounter positive values. The global
maximum point x∗ of the Rosenbrock function is (1,1).

Algorithm Iter.
Taken

Best Solution Found
(µ∗)

f (µ∗)

CMA-ES 72 (1.0, 1.0). 0.0
EPGS (N = 3) 487. (0.999, 1.000) −0.017
STD-Homotopy 624 (0.903, 0.885) −2.401
PGS (N = 1) 513 (0.773, 1.025) −22.84
ZOAdaMM 852 (0.004, 0.618). −39.206
ZOSLGHr 148 (0.105, 0.938). −88.477
ZOSGD 45 (0.272, 1.173). −121.14
ZOSLGHd 471 (−0.447, 1.991). −137.016
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Image Adversarial Attacks

Let C denote a black-box image classifier. Given an image a, the task of image
adversarial attack is to add a minor perturbation x to the pixels of a, so that
a + x is classified by C to a pre-selected category.

Chen Xu Department of Engineering, Shenzhen MSU-BIT University, China. GS-PowerOpt. ICML, 2025.
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Loss Function

For this task, similar to the popular loss function designed in [2], we set the
loss function as

L(x) := max(max
i ̸=T

C(a + x)i − C(a + x)T , κ) + λ∥x∥,

where
• T is the preselected category;
• C(a + x)i denotes the predicted probability by C for a + x to be in

category i ;
• κ ≥ 0 and λ ≥ 0 are hyper-parameters.

Chen Xu Department of Engineering, Shenzhen MSU-BIT University, China. GS-PowerOpt. ICML, 2025.
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Explaining the Loss

Loss : L(x) = max(max
i ̸=T

C(a + x)i − C(a + x)T , κ) + λ∥x∥.

• The smaller is maxi ̸=T C(a + x)i − C(a + x)T , the more certain for C to
classify a + x as the pre-selected category T .

• When minimizing the loss, a close to zero κ (e.g., −0.001) prevents excess
efforts on increasing the certainty level for C to classify a + x as category
T .

Chen Xu Department of Engineering, Shenzhen MSU-BIT University, China. GS-PowerOpt. ICML, 2025.
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Experiment Details

• Dateset D: MNIST hand-written digits or CIFAR-10 images.
• For each of the 100 randomly selected images from D, we apply EPGS,

and other compaired algorithms, to solve

max
x

{−L(x)}.

• If a + µ∗ is classified by C as the preselected category T , where µ∗

denotes the best solution (i.e., perturbation) found by the tested
algorithm, we say the attack is successful.

• Hyper-parameters are selected by trials.

Chen Xu Department of Engineering, Shenzhen MSU-BIT University, China. GS-PowerOpt. ICML, 2025.
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MNIST-Attack Results

Table: Targeted Adversarial Attack on 100 MNIST images (per-image). The success
rate (SR) is the portion of successful attacks out of the 100 attacks. R̄2 measures the
similarity between the original image a and the perturbed one a + µ∗, ∥µ∗∥ denotes
the norm of the perturbation. T̄ denotes the number of steps taken to find the best
solution.

Algorithm SR R̄2 ∥µ∗∥ T̄
CMA-ES 100% 89%(4%) 2.81(0.61) 1489(12)
EPGS 100% 87%(5%) 3.01(0.60) 397(101)
ZOSGD 100% 85%(5%) 3.14(0.61) 1427(242)
ZOSLGHd 100% 74%(9%) 4.21(0.71) 1490(24)
ZOSLGHr 100% 65%(13%) 4.86(0.81) 476(658)
ZOAdaMM 100% 29%(27%) 6.88(1.15) 45(15)
STD-Htp 97% −4%(37%) 8.25(1.09) 530(264)
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Image Adversarial Attack: CIFAR-10

Table: Targeted Adversarial Attack on 100 CIFAR-10 images (per-image).

Algorithm SR R̄2 ∥µ∗∥ T̄
ZOSLGHd 98% 99%(1%) 1.72(0.32) 1290(411)
ZOSLGHr 98% 98%(3%) 2.66(0.68) 456(345)
EPGS 98% 98%(2%) 3.05(0.57) 748(248)
CMA-ES 99% 75%(25%) 10.06(2.35) 158(399)
ZOAdaMM 100% 58%(39%) 13.13(2.71) 58(31)
ZOSGD 62% 99%(1%) 1.19(0.19) 764(349)
STD-Htp 52% 87%(13%) 7.54(1.57) 566(396)
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Summary on Experiment Results

Compared to algorithms using smoothing (which excludes CMA-ES):
• EPGS ranked first in the experiment of Ackley, Rosenbrock, and MNIST.
• EPGS ranked the 3rd but has a performance close to the winner in the

CIFAR-10 task.
While EPGS under performs CMA-ES in the first three tasks, it beats CMA-ES
in the CIFAR-10 task. Moreover, the theoretical convergence guarantee for
EPGS is more developed than that of CMA-ES.
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The Case of Multiple Global Maxima

Although our convergence analysis assumes that f has a unique global
maximum, this condition is not necessary for GS-PowerOpt to work, at least for
the following toy example, in which we apply EPGS to solve

max
x∈R2

f (x) := − log(∥x − m1∥2 + 10−5) − log(∥x − m2∥2 + 10−5),

where m1 = [−.5, −.5] and m2 = [.5, .5] are the two global maxima. Our
experiments show that EPGS is able to locate one of the two maxima.
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Guidance on Selecting the Hyperparameters N and σ

• We recommend to start from a moderate N and incrementally increase its
value during tuning. Although the proper starting value of N may vary for
different problems, based on our experience, 5 for PGS and 0.1 for EPGS
are good choices.

• Our experiments show that a σ-value of 10% of the search radius for x is
a good starting value for tuning.
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Conclusion and Future Work

• The convergence analysis and numerical results show that the easily
implemented optimization method of GS-PowerOpt stands out among its
peers that also apply smoothing techniques.

• Future works would include the convergence analysis for the maximization
objective f with more than one global maxima.
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Thank you!

• Our codes are available at
http://github.com/chen-research/GS-PowerTransform.

• Welcome to visit my webpage at
https://orcid.org/0000-0002-7238-7254,
https://www.linkedin.com/in/chen-xu-quantitative/.

• Email: xuchen@smbu.edu.cn, chen_xu_research@outlook.com
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