Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead Theory-Guided and Efficient Federated Ensemble Distillation Algorithm ICML 2025 Poster KAIST EE InfoLAB Won-Jun Jang, Hyeon-Seo Park, Si-Hyeon Lee Client 1 ### **Problem : Client Data Heterogeneity** ### Federated Ensemble Distillation #### Federated Ensemble Distillation #### Server ### **Federated Ensemble Distillation** ### Prior Federated Ensemble Algorithms - Various pseudo-labeling mechanisms are proposed - Recent weighting mechanisms assign more weight to reliable client - Our methods provides the tightest generalization bound for pseudo-label generated with empirical loss minimizer | Algorithm | Weighting mechanism | | | |----------------|---|--|--| | FedDF, FedGKD+ | Uniform | | | | Fed-ET | ∝ variance of output logit | | | | FedHKT, FedDS | ∝ exp(entropy of client output softmax) | | | | DaFKD | ∝ client discriminator output | | | #### Theoretical Results **Definition 1.** For K clients, the ensemble of their models and weight functions $\{(h_k, w_k)\}_{k=1}^K$ is said to be an optimal model ensemble if the following holds: $$\mathcal{L}_p\left(\sum_{k=1}^K w_k \cdot h_k\right) = \mathbf{E}_p\left[l\left(\sum_{k=1}^K w_k(x) \cdot h_k(x), y(x)\right)\right] \le \min_{h \in \mathcal{H}} \mathcal{L}_p(h) = \mathcal{L}_p(h_p^*). \tag{6}$$ **Theorem 3.** Let the loss function l be convex. Define the client weight functions $\{w_k^*\}_{k=1}^K$ as follows: $$w_k^*(x) \triangleq \frac{n_k \cdot p_k(x)}{\sum_{i=1}^K n_i \cdot p_i(x)} = \frac{\pi_k \cdot p_k(x)}{\sum_{i=1}^K \pi_i \cdot p_i(x)}.$$ (10) Then, the ensemble $\{h_{p_k}^*, w_k^*\}_{k=1}^K$ is an optimal model ensemble, i.e., $\mathcal{L}_p\left(\sum_k w_k^* \cdot h_{p_k}^*\right) \leq \mathcal{L}_p(h_p^*)$. ### Idea #### Theoretical Results **Definition 1.** For K clients, the ensemble of their models and weight functions $\{(h_k, w_k)\}_{k=1}^K$ is said to be an optimal model ensemble if the following holds: $$\mathcal{L}_p\left(\sum_{k=1}^K w_k \cdot h_k\right) = \mathbf{E}_p\left[l\left(\sum_{k=1}^K w_k(x) \cdot h_k(x), y(x)\right)\right] \le \min_{h \in \mathcal{H}} \mathcal{L}_p(h) = \mathcal{L}_p(h_p^*). \tag{6}$$ **Theorem 3.** Let the loss function l be convex. Define the client weight functions $\{w_k^*\}_{k=1}^K$ as follows: $$w_k^*(x) \triangleq \frac{n_k \cdot p_k(x)}{\sum_{i=1}^K n_i \cdot p_i(x)} = \frac{\pi_k \cdot p_k(x)}{\sum_{i=1}^K \pi_i \cdot p_i(x)}.$$ $$\text{Then, the ensemble } \{h_{p_k}^*, w_k^*\}_{k=1}^K \text{ is an optimal model ensemble, i.e., } \mathcal{L}_p\left(\sum_k w_k^* \cdot h_{p_k}^*\right) \leq \mathcal{L}_p(h_p^*).$$ ### **Theoretical Results** **Definition 1.** For K clients, the ensemble of their models and weight functions $\{(h_k, w_k)\}_{k=1}^K$ is said to be an optimal model ensemble if the following holds: $$\mathcal{L}_p\left(\sum_{k=1}^K w_k \cdot h_k\right) = \mathbf{E}_p\left[l\left(\sum_{k=1}^K w_k(x) \cdot h_k(x), y(x)\right)\right] \le \min_{h \in \mathcal{H}} \mathcal{L}_p(h) = \mathcal{L}_p(h_p^*). \tag{6}$$ **Theorem 3.** Let the loss function l be convex. Define the client weight functions $\{w_k^*\}_{k=1}^K$ as follows: $$w_k^*(x) \triangleq \frac{n_k \cdot p_k(x)}{\sum_{i=1}^K n_i \cdot p_i(x)} = \frac{\pi_k \cdot p_k(x)}{\sum_{i=1}^K \pi_i \cdot p_i(x)}.$$ (10) Then, the ensemble $\{h_{p_k}^*, w_k^*\}_{k=1}^K$ is an optimal model ensemble, i.e. $\mathcal{L}_p\left(\sum_k w_k^* \cdot h_{p_k}^*\right) \leq \mathcal{L}_p(h_p^*)$. #### Theoretical Results **Definition 2.** (Odds): For $\phi \in (0,1)$, its odds value Φ is defined as $\Phi(\phi) = \frac{\phi}{1-\phi}$. **Theorem 4.** For a fixed generator G with generating distribution p_g , let D_k be an optimal discriminator for generator G and client k's distribution p_k . Assume that D_k outputs a value over (0,1) using a sigmoid activation function, and let $\Phi_k(x) \triangleq \Phi(D_k(x))$. Then, for $x \in supp(p_g)$, the following holds: $$\frac{n_k \cdot \Phi_k(x)}{\sum_{i=1}^K n_i \cdot \Phi_i(x)} = \frac{\pi_k \cdot p_k(x)}{\sum_{i=1}^K \pi_i \cdot p_i(x)} = w_k^*(x). \tag{11}$$ ### FedGO Algorithm #### 1. Pre-FL: Client discriminators preparation 1. Generator preparation (G1 or G2 or G3) 2. Client discriminator training ### FedGO Algorithm ### FedGO Algorithm #### 2. Main FL: Ensemble distillation along with client discriminators 1. Client model training 2. Client models aggregation ### FedGO Algorithm #### 2. Main FL: Ensemble distillation along with client discriminators 4. Server model training & distribution ^{2.} Client models aggregation ^{3.} Server dataset pseudo-labeling # 03 Experimental Results ### Results Table 3. Server test accuracy (%) of our FedGO and baselines on three image datasets at the 100-th communication round. A smaller α indicates higher heterogeneity. | | CIFAR-10 | | CIFAR-100 | | ImageNet100 | | |------------------|--------------------|-------------------|--------------------|------------------|------------------|------------------| | | $\alpha = 0.1$ | $\alpha = 0.05$ | $\alpha = 0.1$ | $\alpha = 0.05$ | $\alpha = 0.1$ | $\alpha = 0.05$ | | Central Training | 85.33 ± 0.25 | | 51.72±0.65 | | 43.20±1.00 | | | FedAVG | 58.65 ± 5.75 | 46.61 ± 8.54 | 38.93 ± 0.74 | 36.66 ± 0.97 | 29.44 ± 0.41 | 27.58 ± 0.88 | | FedProx | 64.69 ± 2.15 | 55.56 ± 9.86 | 38.21 ± 0.95 | 34.44 ± 1.26 | 29.96 ± 0.66 | 26.99 ± 0.97 | | SCAFFOLD | 61.20 ± 3.98 | 50.10 ± 10.00 | 38.15 ± 0.80 | 36.14 ± 1.06 | 29.13 ± 0.79 | 27.08 ± 0.69 | | FedDisco | 56.78 ± 7.22 | 48.08 ± 8.35 | 38.81 ± 1.02 | 36.86 ± 0.88 | 29.69 ± 0.66 | 27.54 ± 0.51 | | FedUV | 62.58 ± 4.83 | 53.80 ± 5.68 | 38.84 ± 0.79 | 36.17 ± 1.24 | 30.09 ± 1.09 | 27.32 ± 0.65 | | FedTGP | 61.16 ± 6.98 | 61.51 ± 7.78 | 39.58 ± 0.10 | 36.56 ± 0.11 | 29.21 ± 1.13 | 26.34 ± 1.02 | | FedDF | 71.56 ± 5.09 | 59.53 ± 9.88 | 42.74 ± 1.22 | 37.18 ± 1.03 | 33.48 ± 1.00 | 30.94 ± 1.60 | | $FedGKD^+$ | 72.59 ± 4.10 | 59.96 ± 8.60 | 43.35 ± 1.14 | 40.47 ± 1.00 | 34.10 ± 0.67 | 31.42 ± 0.93 | | DaFKD | 71.52 ± 5.56 | 67.51 ± 10.77 | 44.12 ± 2.25 | 39.50 ± 0.85 | 33.34 ± 0.69 | 31.59 ± 1.46 | | FedGO (ours) | 79.62 ±4.36 | 72.35 ± 9.01 | 44.66 ±1.27 | 41.04 ± 0.99 | 34.20 ± 0.71 | 31.70 ± 1.55 | **Project link** # Thank you. Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead