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Problem : Client Data Heterogeneity
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Prior Federated Ensemble Algorithms

« Various pseudo-labeling mechanisms are proposed
* Recent weighting mechanisms assign more weight to reliable client

« Our methods provides the tightest generalization bound for pseudo-label generated with
empirical loss minimizer

Algorithm Weighting mechanism

FedDF, FedGKD* Uniform
Fed-ET o¢ variance of output logit
FedHKT, FedDS « exp(entropy of client output softmax)

DaFKD o« client discriminator output
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Theoretical Results

Definition 1. For K clients, the ensemble of their models and weight functions {(hg,wy)} 1 18
said to be an optimal model ensemble if the following holds:

L, (Z Wy - h;c) =E, |l (Z wi(x) - hk(T),’y(T))

< minL,(h) = L,(h}). (6)

heH p

Theorem 3. Let the loss function [ be convex. Define the client weight functions {w;}# | as
follows:

wi(z) & neopr(e) _ meepe(@)
Shnpi(r) e T pile)

Then, the ensemble {h} ,w;};~, is an optimal model ensemble, i.e., £, (D>, wy - b5 ) < Ly(h3).

(10)
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Idea
p1(x)

1
p(x) == (p1(x) + po(x))
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Definition 1. For K clients, the ensemble of their models and weight functions {(hg,wy)}:*, is
said to be an optimal model ensemble if the following holds:

L, (Z Wy - hk) =E, |l (Z wi(x) - hk(”r),'g(’r))

< minL,(h) = L,(h}). (6)

~ heH p

Theorem 3. Let the loss function [ be convex. Define the client weight functions {w;}# | as
follows:

\ ny, - pr() k- pr(2)
iz i pi(®) 3 mi-pi(x)
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Theoretical Results

Definition 2. (Odds): For ¢ € (0, 1), its odds value ® is defined as ®(¢) = %

Theorem 4. For a fixed generator G with generating distribution p,, let Dj, be an optimal discrim-
inator for generator G and client k’s distribution pj. Assume that Dy, outputs a value over (0, 1)
using a sigmoid activation function, and let ®;(z) = ®(Dg(x)). Then, for z € supp(p,), the
following holds:

— (11)
ZiKzl ni - ®;(v) Zfil T - pi(T)
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FedGO Algorithm

1. Pre-FL : Client discriminators preparation
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FedGO Algorithm

2. Main FL : Ensemble distillation along with client discriminators
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FedGO Algorithm

2. Main FL : Ensemble distillation along with client discriminators

Client 1 S
erver
(e,Label) - a
|
| |
Client 2
> ( , Label) _— - Pseudo-
(N, abel ) — -
— ' _— '

Client C
— t ] ‘
->(~, Label) |
Client models Client discriminators Server dataset Server model
_ . _ , 3. Server dataset 4. Server model
1. Client model training 2. Client models aggregation

pseudo-labeling training & distribution




03 Experimental Results

Results

Table 3. Server test accuracy (%) of our FedGO and baselines on three image datasets at the 100-th communication round. A smaller «
indicates higher heterogeneity.

CIFAR-10 CIFAR-100 ImageNet100
a=0.1 a = 0.05 a=0.1 a = 0.05 a=0.1 a = 0.05

Central Training 85.3340.25 51.72+0.65 43.204+£1.00
FedAVG 58.6545.75 46.611+8.54 38.93+0.74 36.66+0.97 29.4440.41 27.58+0.88
FedProx 64.69+2.15 55.5649.86 38.21+£0.95 34.44+1.26 29.96+0.66 26.99+0.97
SCAFFOLD 61.20+3.98 50.10=10.00 38.15+0.80 36.14+1.06 29.13£0.79 27.08+0.69
FedDisco 56.78+7.22 48.08+8.35 38.81+1.02 36.86+0.88 29.69+0.66 27.54+0.51
FedUV 62.58 +4.83 53.80 + 5.68 38.84 = 0.79 36.17 = 1.24 30.09 = 1.09 27.32 = 0.65
FedTGP 61.16 + 6.98 61.51 +7.78 39.58 + 0.10 36.56 £ 0.11 290.21 +1.13 26.34 £+ 1.02
FedDF 71.564+5.09 59.53+9.88 42.744-1.22 37.18+1.03 33.484+1.00 30.944+1.60
FedGKD™ 72.59+4.10 59.96+8.60 43.35+1.14 40.47+1.00 34.10+0.67 31.42+0.93
DaFKD 71.52+5.56 67.51+10.77 44.1242.25 39.50+0.85 33.34+0.69 31.59+1.46
FedGO (ours) 79.62+4.36 72.35+9.01 44.66+1.27 41.04+0.99 34.20+0.71 31.70+1.55
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