

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

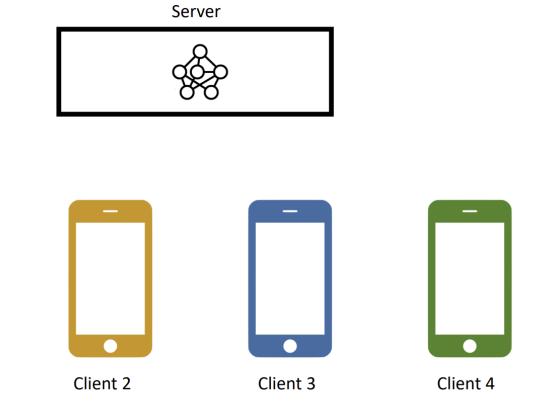
Theory-Guided and Efficient Federated Ensemble Distillation Algorithm

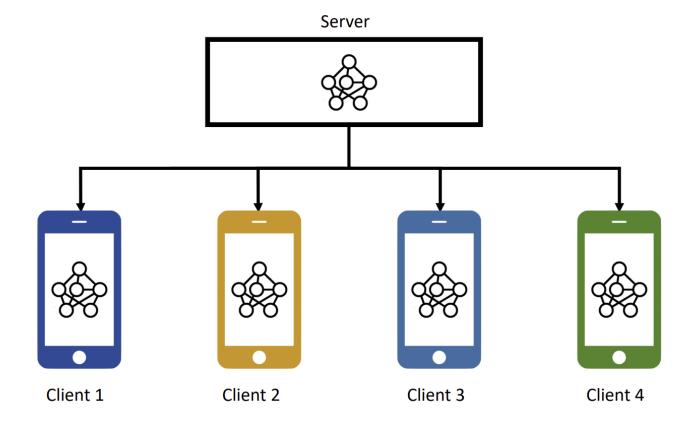
ICML 2025 Poster

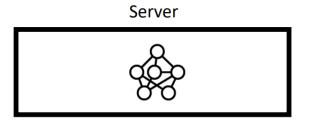
KAIST EE InfoLAB

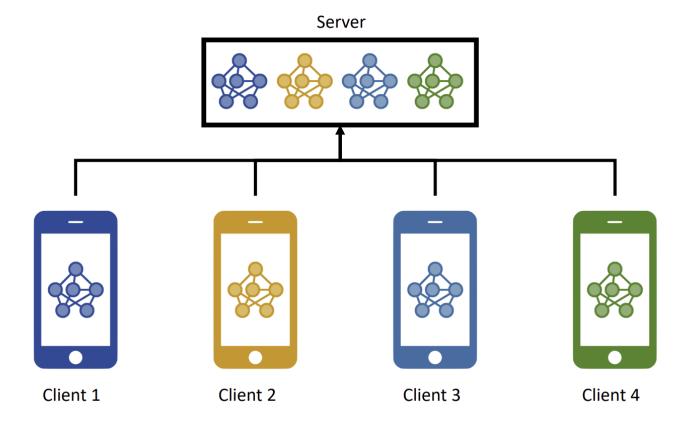
Won-Jun Jang, Hyeon-Seo Park, Si-Hyeon Lee

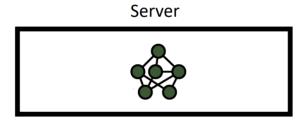
Client 1

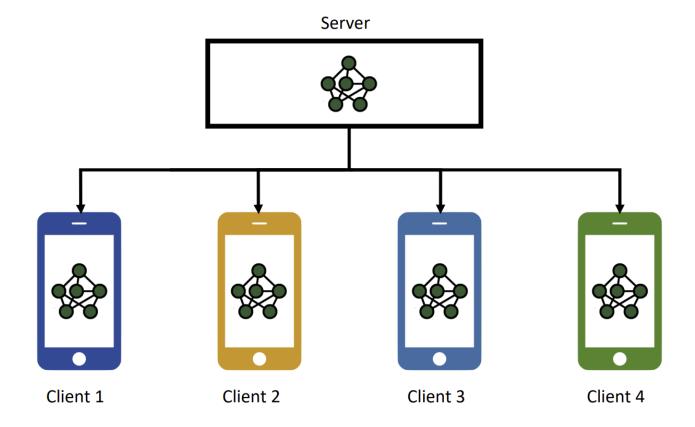




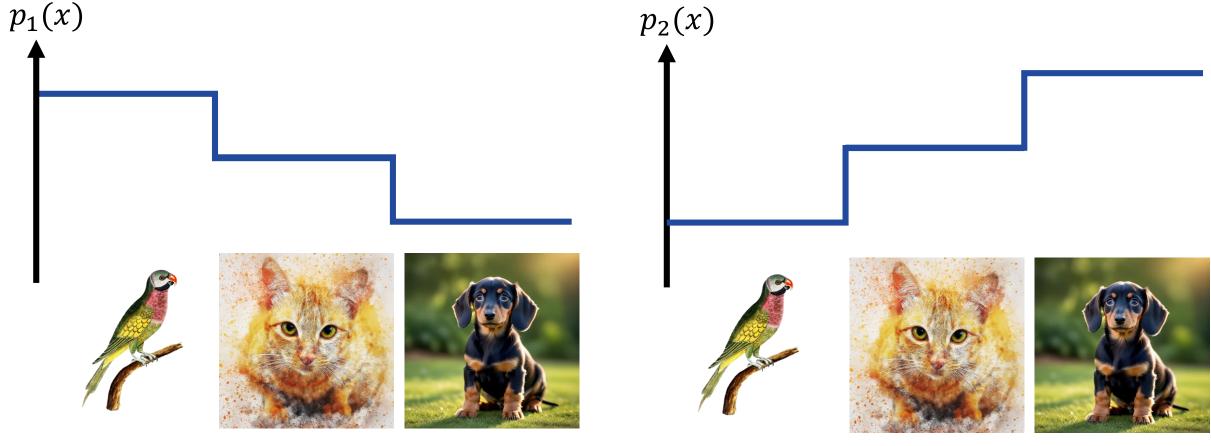




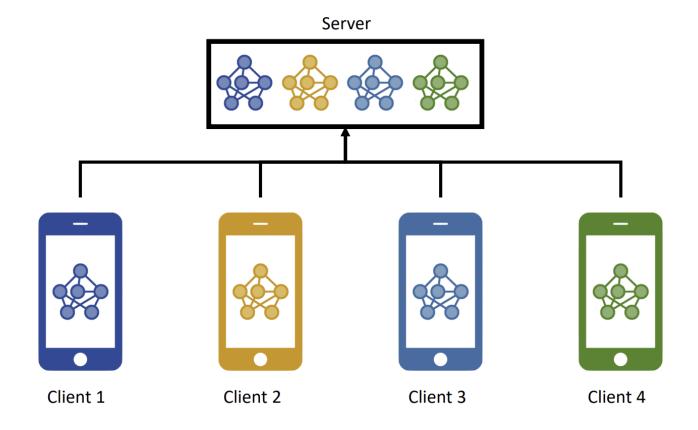




Problem : Client Data Heterogeneity

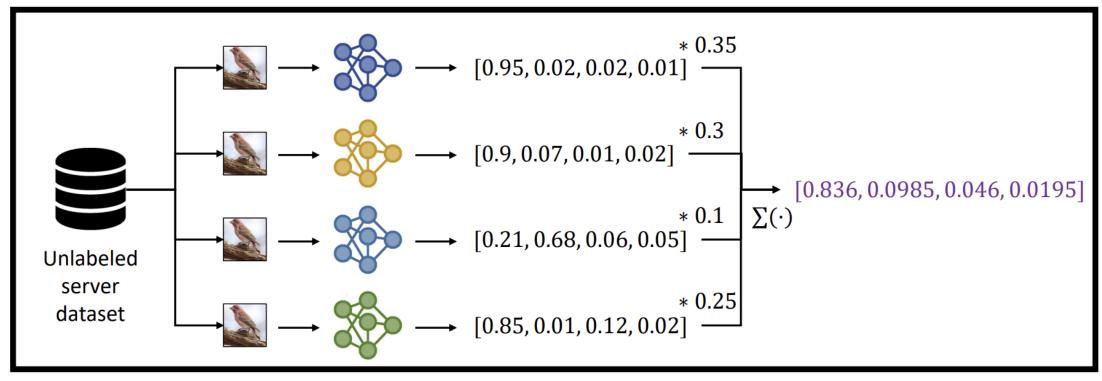


Federated Ensemble Distillation



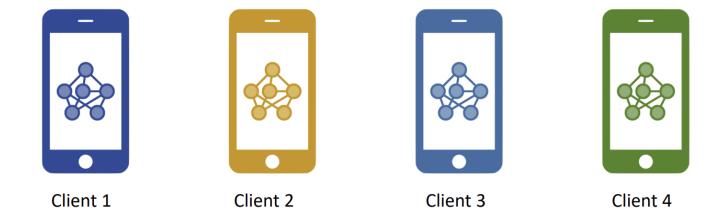
Federated Ensemble Distillation

Server



Federated Ensemble Distillation





Prior Federated Ensemble Algorithms

- Various pseudo-labeling mechanisms are proposed
- Recent weighting mechanisms assign more weight to reliable client
- Our methods provides the tightest generalization bound for pseudo-label generated with empirical loss minimizer

Algorithm	Weighting mechanism		
FedDF, FedGKD+	Uniform		
Fed-ET	∝ variance of output logit		
FedHKT, FedDS	∝ exp(entropy of client output softmax)		
DaFKD	∝ client discriminator output		

Theoretical Results

Definition 1. For K clients, the ensemble of their models and weight functions $\{(h_k, w_k)\}_{k=1}^K$ is said to be an optimal model ensemble if the following holds:

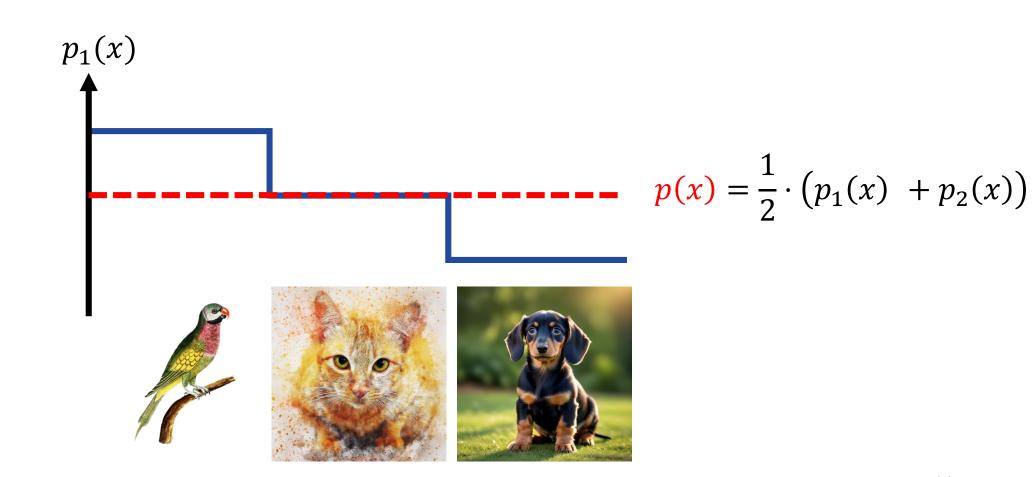
$$\mathcal{L}_p\left(\sum_{k=1}^K w_k \cdot h_k\right) = \mathbf{E}_p\left[l\left(\sum_{k=1}^K w_k(x) \cdot h_k(x), y(x)\right)\right] \le \min_{h \in \mathcal{H}} \mathcal{L}_p(h) = \mathcal{L}_p(h_p^*). \tag{6}$$

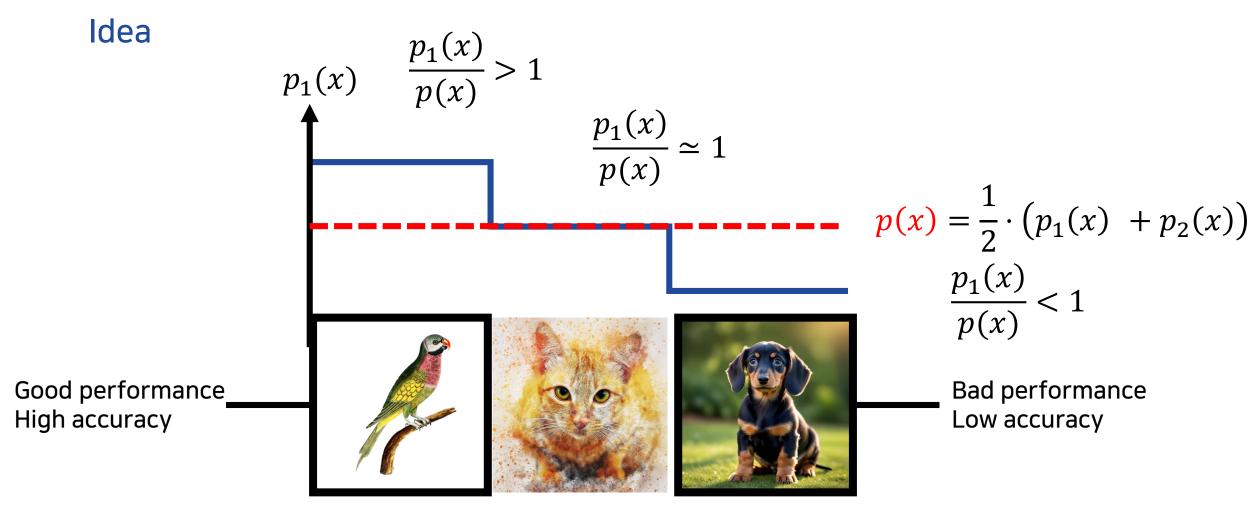
Theorem 3. Let the loss function l be convex. Define the client weight functions $\{w_k^*\}_{k=1}^K$ as follows:

$$w_k^*(x) \triangleq \frac{n_k \cdot p_k(x)}{\sum_{i=1}^K n_i \cdot p_i(x)} = \frac{\pi_k \cdot p_k(x)}{\sum_{i=1}^K \pi_i \cdot p_i(x)}.$$
 (10)

Then, the ensemble $\{h_{p_k}^*, w_k^*\}_{k=1}^K$ is an optimal model ensemble, i.e., $\mathcal{L}_p\left(\sum_k w_k^* \cdot h_{p_k}^*\right) \leq \mathcal{L}_p(h_p^*)$.

Idea





Theoretical Results

Definition 1. For K clients, the ensemble of their models and weight functions $\{(h_k, w_k)\}_{k=1}^K$ is said to be an optimal model ensemble if the following holds:

$$\mathcal{L}_p\left(\sum_{k=1}^K w_k \cdot h_k\right) = \mathbf{E}_p\left[l\left(\sum_{k=1}^K w_k(x) \cdot h_k(x), y(x)\right)\right] \le \min_{h \in \mathcal{H}} \mathcal{L}_p(h) = \mathcal{L}_p(h_p^*). \tag{6}$$

Theorem 3. Let the loss function l be convex. Define the client weight functions $\{w_k^*\}_{k=1}^K$ as follows:

$$w_k^*(x) \triangleq \frac{n_k \cdot p_k(x)}{\sum_{i=1}^K n_i \cdot p_i(x)} = \frac{\pi_k \cdot p_k(x)}{\sum_{i=1}^K \pi_i \cdot p_i(x)}.$$

$$\text{Then, the ensemble } \{h_{p_k}^*, w_k^*\}_{k=1}^K \text{ is an optimal model ensemble, i.e., } \mathcal{L}_p\left(\sum_k w_k^* \cdot h_{p_k}^*\right) \leq \mathcal{L}_p(h_p^*).$$

Theoretical Results

Definition 1. For K clients, the ensemble of their models and weight functions $\{(h_k, w_k)\}_{k=1}^K$ is said to be an optimal model ensemble if the following holds:

$$\mathcal{L}_p\left(\sum_{k=1}^K w_k \cdot h_k\right) = \mathbf{E}_p\left[l\left(\sum_{k=1}^K w_k(x) \cdot h_k(x), y(x)\right)\right] \le \min_{h \in \mathcal{H}} \mathcal{L}_p(h) = \mathcal{L}_p(h_p^*). \tag{6}$$

Theorem 3. Let the loss function l be convex. Define the client weight functions $\{w_k^*\}_{k=1}^K$ as follows:

$$w_k^*(x) \triangleq \frac{n_k \cdot p_k(x)}{\sum_{i=1}^K n_i \cdot p_i(x)} = \frac{\pi_k \cdot p_k(x)}{\sum_{i=1}^K \pi_i \cdot p_i(x)}.$$
 (10)

Then, the ensemble $\{h_{p_k}^*, w_k^*\}_{k=1}^K$ is an optimal model ensemble, i.e. $\mathcal{L}_p\left(\sum_k w_k^* \cdot h_{p_k}^*\right) \leq \mathcal{L}_p(h_p^*)$.

Theoretical Results

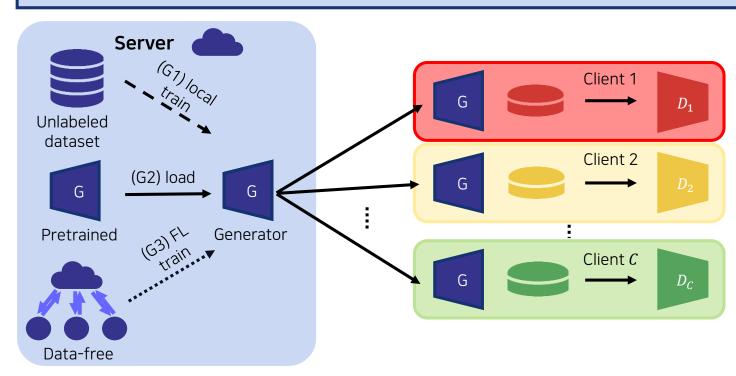
Definition 2. (Odds): For $\phi \in (0,1)$, its odds value Φ is defined as $\Phi(\phi) = \frac{\phi}{1-\phi}$.

Theorem 4. For a fixed generator G with generating distribution p_g , let D_k be an optimal discriminator for generator G and client k's distribution p_k . Assume that D_k outputs a value over (0,1) using a sigmoid activation function, and let $\Phi_k(x) \triangleq \Phi(D_k(x))$. Then, for $x \in supp(p_g)$, the following holds:

$$\frac{n_k \cdot \Phi_k(x)}{\sum_{i=1}^K n_i \cdot \Phi_i(x)} = \frac{\pi_k \cdot p_k(x)}{\sum_{i=1}^K \pi_i \cdot p_i(x)} = w_k^*(x). \tag{11}$$

FedGO Algorithm

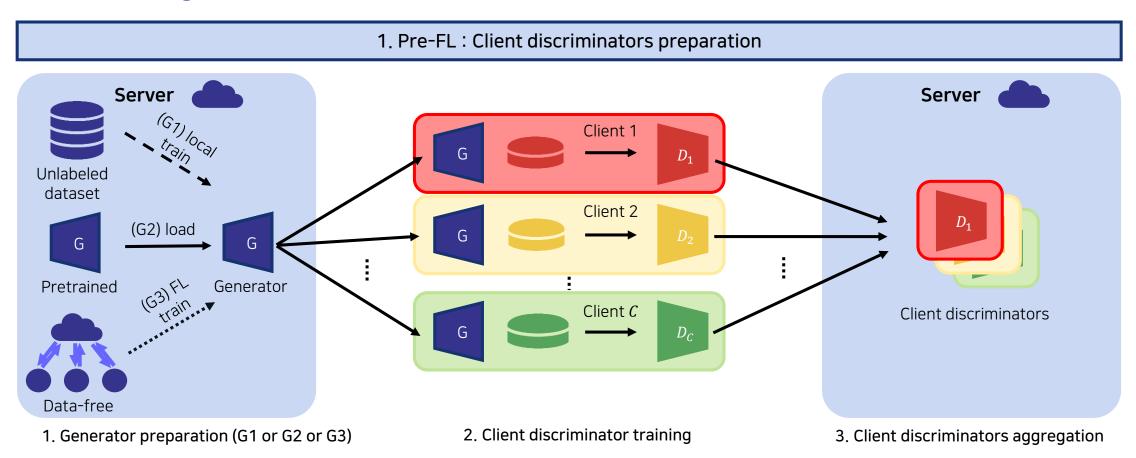
1. Pre-FL: Client discriminators preparation



1. Generator preparation (G1 or G2 or G3)

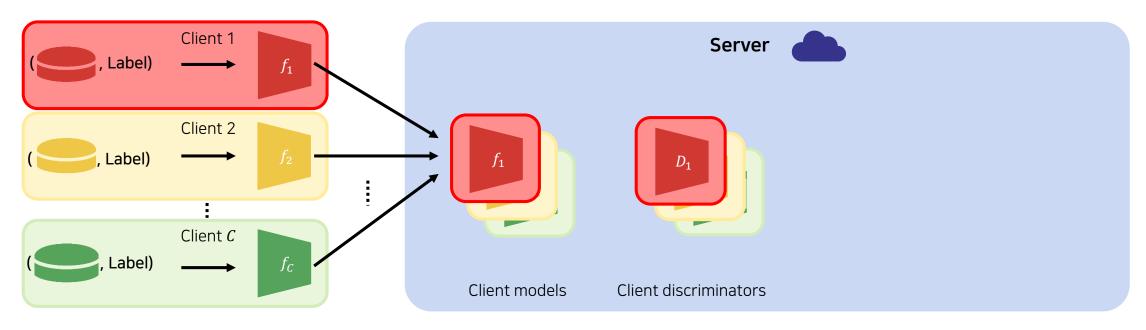
2. Client discriminator training

FedGO Algorithm



FedGO Algorithm

2. Main FL: Ensemble distillation along with client discriminators

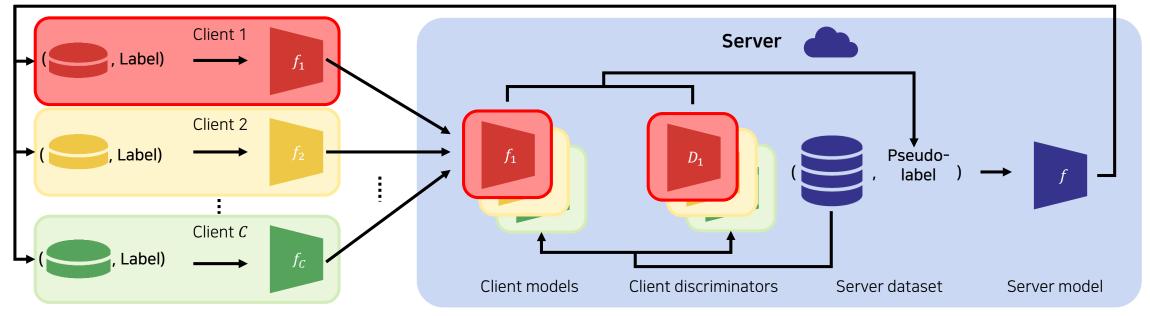


1. Client model training

2. Client models aggregation

FedGO Algorithm

2. Main FL: Ensemble distillation along with client discriminators



4. Server model training & distribution

^{2.} Client models aggregation

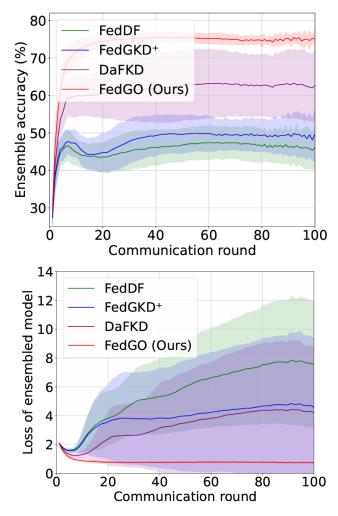
^{3.} Server dataset pseudo-labeling

03 Experimental Results

Results

Table 3. Server test accuracy (%) of our FedGO and baselines on three image datasets at the 100-th communication round. A smaller α indicates higher heterogeneity.

	CIFAR-10		CIFAR-100		ImageNet100	
	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.05$
Central Training	85.33 ± 0.25		51.72±0.65		43.20±1.00	
FedAVG	58.65 ± 5.75	46.61 ± 8.54	38.93 ± 0.74	36.66 ± 0.97	29.44 ± 0.41	27.58 ± 0.88
FedProx	64.69 ± 2.15	55.56 ± 9.86	38.21 ± 0.95	34.44 ± 1.26	29.96 ± 0.66	26.99 ± 0.97
SCAFFOLD	61.20 ± 3.98	50.10 ± 10.00	38.15 ± 0.80	36.14 ± 1.06	29.13 ± 0.79	27.08 ± 0.69
FedDisco	56.78 ± 7.22	48.08 ± 8.35	38.81 ± 1.02	36.86 ± 0.88	29.69 ± 0.66	27.54 ± 0.51
FedUV	62.58 ± 4.83	53.80 ± 5.68	38.84 ± 0.79	36.17 ± 1.24	30.09 ± 1.09	27.32 ± 0.65
FedTGP	61.16 ± 6.98	61.51 ± 7.78	39.58 ± 0.10	36.56 ± 0.11	29.21 ± 1.13	26.34 ± 1.02
FedDF	71.56 ± 5.09	59.53 ± 9.88	42.74 ± 1.22	37.18 ± 1.03	33.48 ± 1.00	30.94 ± 1.60
$FedGKD^+$	72.59 ± 4.10	59.96 ± 8.60	43.35 ± 1.14	40.47 ± 1.00	34.10 ± 0.67	31.42 ± 0.93
DaFKD	71.52 ± 5.56	67.51 ± 10.77	44.12 ± 2.25	39.50 ± 0.85	33.34 ± 0.69	31.59 ± 1.46
FedGO (ours)	79.62 ±4.36	72.35 ± 9.01	44.66 ±1.27	41.04 ± 0.99	34.20 ± 0.71	31.70 ± 1.55



Project link

Thank you.

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead