Statistical and Computational Guarantees of Kernel Max-Sliced Wasserstein Distances

Jie Wang Georgia Institute of Technology

Joint work with March Boedihardjo (Michigan State) and Yao Xie (Georgia Tech)

Background of Hypothesis Testing

- **&** Given: high-dimensional samples from unknown distributions μ and ν
- **Goal**: determine whether μ and ν differ
- Project data linearly and follow by Wasserstein testing [1]

$$\mathbf{MS}(\mu, \nu) = \max_{f: f(x) = a^{\mathsf{T}} x} \mathbf{W}(f_{\#}\mu, f_{\#}\nu)$$

Testing with Nonlinear Dimensionality Reduction

Use nonlinear operator modeled by kernel method

$$\mathbf{KMS}(\mu, \nu) = \max_{f \in \mathcal{H}: \|f\|_{\mathcal{H}} \le 1} \mathbf{W}(f_{\#}\mu, f_{\#}\nu)$$

Kernel Max-Sliced Wasserstein Distance

$$\mathbf{KMS}(\mu, \nu) = \max_{f \in \mathcal{H}: \|f\|_{\mathcal{H}} \le 1} \mathbf{W}(f_{\#}\mu, f_{\#}\nu)$$

- \mathcal{H} : reproducing kernel Hilbert space (RKHS) dependent on $k(\cdot, \cdot)$: $\mathbb{R}^{D \times D} \to \mathbb{R}^1$
- $f: \mathbb{R}^D \to \mathbb{R}^1$: nonlinear projector

- 1. Statistical guarantees of KMS
- 2. Computational guarantees of KMS
- 3. Practical Applications

Finite-Sample Guarantees

$$\mathbf{KMS}(\mu, \nu) = \max_{f \in \mathcal{H}: \|f\|_{\mathcal{H}} \le 1} \mathbf{W}(f_{\#}\mu, f_{\#}\nu)$$

Theorem (Informal). Assume $k(x, x) \le A$, $\forall x$. With high probability,

$$\mathbf{KMS}(\mu, \hat{\mu}_n) = \mathcal{O}(n^{-1/2}).$$

- $\mathcal{O}(\cdot)$ hides constant depending on A
- KMS breaks the curse of dimensionality of Wasserstein distance
- Free of distribution assumptions
 - MS distance [Sloan N et. al, 2022, Tianyi et. al, 2021]: finite diameter of support
 - KMS distance [Wang et. al, 2022]: light-tailed distribution

Finite-Dimensional Reformulation

$$\mathbf{KMS}(\hat{\mu}_n, \hat{\nu}_n) = \max_{\omega \in \mathbb{R}^{2n}: \|\omega\|_2 = 1} \left\{ \min_{\pi \in \Gamma_n} \sum_{i,j=1}^n \pi_{i,j} (M_{i,j}^{\mathsf{T}} \omega)^2 \right\}$$

- $M_{i,i} \in \mathbb{R}^{2n}$: concatenation of kernel valued on data points
- Non-concave quadratic optimization problem

Theorem. $KMS(\hat{\mu}_n, \hat{\nu}_n)$ is \mathcal{NP} -hard to compute

$$(KMS \text{ Problem}) \qquad \underbrace{ \max_{\omega: \ \|\omega\|_2 = 1} \min_{i \in [n]} \omega^\top A_i A_i^\top \omega}_{\text{$\omega: \ \|\omega\|_2 = 1}} \qquad \underbrace{ \left(\text{Fair-PCA with rank-1 data} \right)}_{\text{$\omega: \ \|\omega\|_2 = 1}} \qquad \underbrace{ \left(\text{Give integers } a_1, \ldots, a_N, \text{determine whether binary variables } \{x_i\}_{i=1}^N \in \{-1, 1\}^N \text{exist such that } \sum_{i=1}^N a_i x_i = 0? \right)}_{\text{$(\textbf{Partities})}}$$

Samadi, Samira, et al. NIPS2018

(Partition)

Finite-Dimensional Reformulation

$$\mathbf{KMS}(\hat{\mu}_n, \hat{\nu}_n) = \max_{\omega \in \mathbb{R}^{2n}: \|\omega\|_2 = 1} \left\{ \min_{\pi \in \Gamma_n} \sum_{i,j=1}^n \pi_{i,j} \langle M_{i,j} M_{i,j}^{\mathsf{T}}, \omega \omega^{\mathsf{T}} \rangle \right\}$$

• Approximation algorithm using semidefinite relaxation (SDR):

Semidefinite Relaxation (SDR)

$$\mathbf{KMS}(P_n, Q_n) = \max_{S \succeq 0, \mathrm{Trace}(S) = 1, \mathrm{rank}(S) = 1} \left\{ \min_{\pi \in \Gamma_n} \sum_{i,j=1}^n \pi_{i,j} \langle M_{i,j} M_{i,j}^\top, S \rangle \right\}$$

$$\leq \max_{S \succeq 0, \mathrm{Trace}(S) = 1} \left\{ \min_{\pi \in \Gamma_n} \sum_{i,j=1}^n \pi_{i,j} \langle M_{i,j} M_{i,j}^\top, S \rangle \right\}$$

Theorem (Informal). Stochastic gradient method with biased oracles solves SDR up to δ optimality gap with operational complexity

$$\tilde{\mathcal{O}}(n^3\delta^{-3})$$

Quality of Semidefinite Relaxation

$$(KMS) = \max_{S \succeq 0, \text{Trace}(S)=1, \text{rank}(S)=1} \left\{ \min_{\pi \in \Gamma_n} \sum_{i,j=1}^n \pi_{i,j} \langle M_{i,j} M_{i,j}^\top, S \rangle \right\}$$

$$(SDR) = \max_{S \ge 0, \text{Trace}(S) = 1} \begin{cases} \min_{\pi \in \Gamma_n} \sum_{i,j=1}^n \pi_{i,j} \langle M_{i,j} M_{i,j}^\top, S \rangle \end{cases}$$

Theorem. There exists an optimal solution to (SDR) with

$$\operatorname{rank} k \triangleq 1 + \left| \sqrt{2n + \frac{9}{4} - \frac{3}{2}} \right|.$$

$$(KMS) \le (SDR) \le \max_{S \ge 0, \text{Trace}(S) = 1, \text{rank}(S) = k} \begin{cases} \min_{\pi \in \Gamma_n} \sum_{i,j=1}^n \pi_{i,j} \langle M_{i,j} M_{i,j}^\top, S \rangle \end{cases}$$

Smaller rank of optimal solution yields better performance

Summary

- A novel non-parametric metric for comparing high-dimensional distributions
- Sharp finite-sample guarantees
- Computational Guarantees:
 - A. Non-concave quadratic maximization problem: \mathcal{NP} -hard
 - B. Approximation algorithm with performance guarantees:
- Practical Applications:
 - 1. High-dimensional Two-Sample Testing
 - 2. Change-Point Detection