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Background of Hypothesis Testing
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❖ Given: high-dimensional samples from unknown distributions  and  

❖ Goal: determine whether  and  differ

μ ν

μ ν

Wang, Gao, and Xie. Two-sample test using projected wasserstein distance. ISIT-21

• Project data linearly and follow 
by Wasserstein testing [1]

MS(μ, ν) = max
f: f(x)=a⊤x

W( f#μ, f#ν)



Testing with Nonlinear Dimensionality Reduction
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• Use nonlinear operator modeled by kernel method

KMS(μ, ν) = max
f∈ℋ: ∥f∥ℋ≤1

W( f#μ, f#ν)

(a) Scatter plot of 
data

(b) Density of projected 
samples using MS

(c) Density of projected 
samples using KMS

(d) Heatmap of estimated 
nonlinear projector

Wang, Gao, and Xie. Two-sample Test with Kernel Projected Wasserstein Distance. AISTATS-22



Kernel Max-Sliced Wasserstein Distance
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KMS(μ, ν) = max
f∈ℋ: ∥f∥ℋ≤1

W( f#μ, f#ν)

• : reproducing kernel Hilbert space (RKHS) dependent on  

• : nonlinear projector

ℋ k( ⋅ , ⋅ ) : ℝD×D → ℝ1

f : ℝD → ℝ1

1. Statistical guarantees of KMS 

2. Computational guarantees of KMS 

3. Practical Applications

Wang, March, and Xie. Statistical and Computational Guarantees of Kernel Max-Sliced Wasserstein Distances. ICML-25



Finite-Sample Guarantees
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KMS(μ, ν) = max
f∈ℋ: ∥f∥ℋ≤1

W( f#μ, f#ν)

Theorem (Informal). Assume . With high probability,  

 

•  hides constant depending on 

k(x, x) ≤ A, ∀x

KMS(μ, ̂μn) = 𝒪(n−1/2) .

𝒪( ⋅ ) A

•  breaks the curse of dimensionality of Wasserstein distance 

• Free of distribution assumptions  

• MS distance [Sloan N et. al, 2022, Tianyi et. al, 2021]: finite diameter of support 

• KMS distance [Wang et. al, 2022]: light-tailed distribution

KMS



Finite-Dimensional Reformulation
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KMS( ̂μn, ̂νn) = max
ω∈ℝ2n: ∥ω∥2=1

min
π∈Γn

n

∑
i,j=1

πi,j(M⊤
i,jω)2

• concatenation of kernel valued on data points 

• Non-concave quadratic optimization problem

Mi,j ∈ ℝ2n :

Theorem.  is -hard to computeKMS( ̂μn, ̂νn) 𝒩𝒫

(Fair-PCA with rank-1 data)
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Give integers a1, . . . , aN ,
determine whether binary
variables {xi}Ni=1 2 {�1, 1}N
exist such that

PN
i=1 aixi = 0?

(Partition)

◆ ◆(KMS Problem)

Samadi, Samira, et al. NIPS2018



Finite-Dimensional Reformulation
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KMS( ̂μn, ̂νn) = max
ω∈ℝ2n: ∥ω∥2=1

min
π∈Γn

n

∑
i,j=1

πi,j⟨Mi,jM⊤
i,j, ωω⊤⟩

• Approximation algorithm using semidefinite relaxation (SDR):

S = ωω⊤, ω ∈ ℝ2n, ∥ω∥2 = 1

S ⪰ 0, Trace(S) = 1, rank(S) = 1



Semidefinite Relaxation (SDR)
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KMS(Pn, Qn) = max
S⪰0,Trace(S)=1,rank(S)=1

min
π∈Γn

n

∑
i,j=1

πi,j⟨Mi,jM⊤
i,j, S⟩

≤ max
S⪰0,Trace(S)=1

min
π∈Γn

n

∑
i,j=1

πi,j⟨Mi,jM⊤
i,j, S⟩

Theorem (Informal). Stochastic gradient method with biased oracles solves SDR up to  
optimality gap with operational complexity

δ

𝒪̃(n3δ−3)



Quality of Semidefinite Relaxation
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•   

•

(KMS) = max
S⪰0,Trace(S)=1,rank(S)=1

min
π∈Γn

n

∑
i,j=1

πi,j⟨Mi,jM⊤
i,j, S⟩

(SDR) = max
S⪰0,Trace(S)=1

min
π∈Γn

n

∑
i,j=1

πi,j⟨Mi,jM⊤
i,j, S⟩

Smaller rank of optimal 
solution yields better 
performance

Theorem. There exists an optimal solution to (SDR) with 

rank . 

•

k ≜ 1 + ⌊ 2n +
9
4

−
3
2 ⌋

(KMS) ≤ (SDR) ≤ max
S⪰0,Trace(S)=1,rank(S)=k

min
π∈Γn

n

∑
i,j=1

πi,j⟨Mi,jM⊤
i,j, S⟩
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Summary
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• A novel non-parametric metric for comparing high-dimensional distributions 

• Sharp finite-sample guarantees 

• Computational Guarantees: 

A. Non-concave quadratic maximization problem:  

B. Approximation algorithm with performance guarantees: 

• Practical Applications: 

1. High-dimensional Two-Sample Testing 

2. Change-Point Detection

𝒩𝒫-hard


