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Part I: What is Meta-Black-Box-Optimization (MetaBBO)?

[1] Ma Zeyuan, et al. MetaBox: A Benchmark Platform for Meta-Black-Box Optimization with Reinforcement Learning. NeurIPS 2023.

[2] Ma, Zeyuan, et al. "Toward automated algorithm design: A survey and practical guide to meta-black-box-optimization." IEEE TEVC (2025).

MetaBBO leverages the generalization strength of 
Meta-learning to enhance the optimization performance 
of BBO algorithms in the minimal expertise cost [1] [2].

Bi-level Paradigm:

Meta-level Algorithm Design Task: 
The policy �� is trained to dictates desired algorithm design � 
by conditioning the optimization state feature �.  

Low-level Optimization Task:
The algorithm A adopts the dictated design to optimize a distribution 
of problems   , providing meta-performence ����(∙) for training the policy.



Part I: What is Meta-Black-Box-Optimization?

In this work, we focus on a particular MetaBBO algorithm design task: Dynamic Algorithm Configuration
Meanwhile, we focus on a particular learning methodology: Reinforcement Learning
A general workflow of using RL for DAC can be instantiated from MetaBBO as below [1] [2]:

RL Agent (meta level)

Environment (lower level)

[1] Xue K et al. Multi-Agent Dynamic Algorithm Configuration. NeurIPS 2022.
[2] Ma Z et al. Auto-Configuring Exploration-Exploitation Tradeoff in Evolutionary Computation via Deep Reinforcement Learning. GECCO 2024.
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Part II: Motivation?

Existing BBO Algorithms usually contain many controllable 
hyper-parameters, making it difficult to search for the optimal 
algorithm configuration policy and slowing down the training.
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In BBO scenarios, the collection of trajectories is expensive or 
time-consuming, making the efficiency of the online learning 
paradigms in existing MetaBBO works problematic.
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Part II: Motivation?
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We transform DAC task into a long-sequence decision process 
and introduce a Q-function decomposition scheme to represent 
each hyper-parameter as a single action step.

We collect offline DAC experience trajectories from both strong 
MetaBBO baselines and a random policy to provide exploitation 
and exploration data used for robust training.



Part III: Problem Formulation
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Ø Transform dynamic algorithm configuration (DAC) task into a long-
sequence decision process and introduce a Q-function decomposition 
scheme to represent each hyper-parameter as a single action step.

Ø The meta-objective of MetaBBO is to search the optimal policy πθ∗  
that maximizes the expectation of accumulated performance 
improvement over all problem instances in the training set:



Part IV: Offline E&E Dataset Collection 
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Ø A series of up-to-date MetaBBO methods: RLPSO, 
LDE and GLEET are pre-trained and then rollouted 
on the BBO algorithm and problems to collect high 
quality exploitation trajectories.  

Ø A random strategy is introduced to randomly control the 
hyper-parameters and produce exploration trajectories. 

Ø By combining exploitation and exploration experience, 
Q-Mamba learns robust and high-performance meta-
level policy.



Part V: Conservative Q-learning Loss

We represent each hyper-parameter as a single action step in the decision process and learn the decomposed sequential 
Q-function through offline RL to improve the training efficiency of MetaBBO. A compositional Q-loss which enhances 
the offline learning by removing distributional shift is proposed.

Ø The first two branches are TD errors following 
the Bellman backup for decomposed Q-function, 
with weight β=10 on the last action dimension 
to reinforce the learning on this dimension.

Ø The conservative regularization introduced in 
offline RL method CQL, which is used to relieve 
the over-estimation due to the distribution shift. 
We set λ=1 in this paper to strike a good balance.



Part VI: Mamba-based Q-Learner

Ø MetaBBO task features long-sequence process that involves thousands of decision steps since there are hundreds 
of optimization steps and K hyper-parameters to be decided per optimization step.  Mamba is adopted since it 
parameterizes the dynamic parameters as functions of input state token, which facilitate flexible learning of long-
term and short-term dependencies from historical state sequence. 

Ø Mamba equips itself with hardware-aware I/O computation and a fast parallel scan algorithm: PrefixSum, which 
allows Mamba  has the same memory efficiency as highly optimized FlashAttention



Part VII: Some Empirical Obervation
Ø Experiment Setup:

Baselines: 

Training dataset: Three low-level BBO algorithms with 3, 10 and 16 hyper-parameters sampled from the algorithm space in ConfigX. 
The problem distribution includes 16 problems (5D-50D) from CoCo BBOB Testsuites which contains 24 synthetic functions.

Training Settings: Decomposed Offline Q-function Learning, 300 epoch, learning rate 5e-3.

In-Dsitribution Test Set: The three low-level BBO algorithms on the 8 problems (5D-50D) from CoCo BBOB Testsuites which have 
not been used for training.
Out-Of-Distribution Test Sets: A continuous control neuroevolution task on a 2-layer MLP policy for Mujoco.

Online: RLPSO that uses simple MLP , LDE that facilitates LSTM and GLEET that uses Transformer architecture.

Offline: DT, DeMa, QDT and QT that apply conditional imitation learning on the E&E dataset, and Q-Transformer 
that uses similar Q-value decomposition scheme as Q-Mamba, while the neural network architecture is Transformer.



Part VII: Some Empirical Obervation

Ø In-distribution Generalization:

Ø Q-Mamba effectively achieves competitive or even superior optimization performance to prior online/offline baselines.

Ø Q-Mamba v.s. Online MetaBBO: By learning from the offline E&E dataset, Q-Mamba reduces the training budget which  
is especially appealing for BBO scenarios where the simulation is expensive or time-consuming. 

Ø Q-Mamba v.s. Offline MetaBBO: The weighted Q-loss function accelerates the learning of the TD error and the Mamba 
architecture allows selectively remember or forget historical states which avoids the linear time invariance of Transformer.



Part VII: Some Empirical Obervation

Ø Out-of-distribution Generalization:

Ø While only trained on low-dimensional synthetic problems, Q-Mamba is capable of optimizing the MLP polices which 
hold thousands of parameters in neuroevolution tasks. 

Ø Compared to online baselines, Q-Mamba is capable of learning effective policy with comparable generalization 
performance, with only consuming less than half training resources.
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