Confounder-Free Continual Learning via Recursive Feature Normalization Camila Gonzalez 1 Mohammad H. Abbasi ¹ Qingyu Zhao² Kilian M. Pohl¹ Ehsan Adeli 1 ¹Stanford University ²Weill Cornell Medicine #### Confounders #### Confounders ^{*}Rajan et al. Population estimate of people with clinical Alzheimer's disease and mild cognitive impairment in the United States (2020-2060). In Alzheimers Dement, 2021. ### **Static Learning** values ¹Adeli et al. *Bias-Resilient Neural Network*. Preprint, 2020. ²Lu et al. *Metadata Normalization*. In CVPR, 2021. ³Vento et al. A penalty approach for normalizing feature distributions to build confounder-free models. In MICCAI 2022, vol. 13433 of Lecture Notes in Computer Science. #### Parameter Updates for MDN* Say we have N training examples. X is the confounder matrix, and z is the vector of intermediate learned feature representation of the model. Ordinary Least Squares: $$\beta = \left(\sum_{i=1}^{N} X_i X_i^T\right)^{-1} \left(\sum_{i=1}^{N} z_i X_i\right)$$ ### **Continual Learning** #### **Recursive Metadata Normalization** **Parameter Updates:** $\beta(N+1) = \beta(N) + K(N+1)e(N+1)$, where $e(N+1) = z_{N+1} - X_{N+1}^T \beta(N)$ is the a priori error and K(N+1) is the Kalman Gain at the N+1 step ### R-MDN effectively removes confounder influence from learned DNN features ### R-MDN effectively removes confounder influence from learned DNN features | Method | Deviation of accuracy from (1) theoretical accuracy | | |------------------|---|--| | CNN Baseline | 0.18 ± 0.00 | | | BR-Net | 0.04 ± 0.03 | | | Stage-specific M | $100 0.25 \pm 0.00$ | | | P-MDN | 0.04 ± 0.01 | | | R-MDN | $\textbf{0.02} \pm \textbf{0.01}$ | | ## R-MDN is a normalization layer and can be tacked on to various model architectures Skin lesion classification on HAM10K¹ dataset, with age as confounder Example images from HAM10K | Accuracy | Average $dcor^2(\downarrow)$ | |--|---| | 0.7095 ± 0.0626 | 0.0864 ± 0.0336 | | 0.7247 ± 0.0627 | 0.0544 ± 0.0534 | | 0.6750 ± 0.0945 | 0.2595 ± 0.0620 | | 0.5503 ± 0.0541 | 0.0928 ± 0.0630 | | 0.5288 ± 0.0571 | 0.0739 ± 0.0555 | | 0.6919 ± 0.0723 | $\pmb{0.0475 \pm 0.0247}$ | | 0.6437 ± 0.0586
0.6739 ± 0.0686 | 0.0938 ± 0.0506
0.0592 ± 0.0488 | | 0.7356 ± 0.0757 | 0.0512 ± 0.0407 | | 0.7186 ± 0.0736 | 0.0354 ± 0.0210 | | 0.6849 ± 0.0745 | 0.0470 ± 0.0304 | | | 0.7095 ± 0.0626 0.7247 ± 0.0627 0.6750 ± 0.0945 0.5503 ± 0.0541 0.5288 ± 0.0571 0.6919 ± 0.0723 0.6437 ± 0.0586 0.6739 ± 0.0686 0.7356 ± 0.0757 0.7186 ± 0.0736 | ¹Tschandl et al. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. In Scientific Data, 2018. ## R-MDN can remove the influence from multiple confounders Diagnostic classification on ADNI^{1,2} dataset, with both age and sex as confounders Example images from ADNI ¹Mueller et al. *The Alzheimer's Disease Neuroimaging Initiative*. In Neuroimaging Clinics of North America, 2005. ²Peterson et al. *Alzheimer's Disease Neuroimaging Initiative (ADNI) Clinical Characterization*. In Neurology, 2010. # R-MDN makes equitable predictions across population groups Sex classification on ABCD¹ dataset, with Pubertal Development Score (PDS) as confounder Example images from ABCD ### Interested in knowing more? ynshah@stanford.edu eadeli@stanford.edu