Confounder-Free Continual Learning via Recursive Feature Normalization

Camila Gonzalez 1

Mohammad H. Abbasi ¹

Qingyu Zhao²

Kilian M. Pohl¹

Ehsan Adeli 1

¹Stanford University ²Weill Cornell Medicine

Confounders

Confounders

^{*}Rajan et al. Population estimate of people with clinical Alzheimer's disease and mild cognitive impairment in the United States (2020-2060). In Alzheimers Dement, 2021.

Static Learning

values

¹Adeli et al. *Bias-Resilient Neural Network*. Preprint, 2020.

²Lu et al. *Metadata Normalization*. In CVPR, 2021.

³Vento et al. A penalty approach for normalizing feature distributions to build confounder-free models. In MICCAI 2022, vol. 13433 of Lecture Notes in Computer Science.

Parameter Updates for MDN*

Say we have N training examples. X is the confounder matrix, and z is the vector of intermediate learned feature representation of the model.

Ordinary Least Squares:
$$\beta = \left(\sum_{i=1}^{N} X_i X_i^T\right)^{-1} \left(\sum_{i=1}^{N} z_i X_i\right)$$

Continual Learning

Recursive Metadata Normalization

Parameter Updates: $\beta(N+1) = \beta(N) + K(N+1)e(N+1)$,

where $e(N+1) = z_{N+1} - X_{N+1}^T \beta(N)$ is the a priori error and K(N+1) is the Kalman Gain at the N+1 step

R-MDN effectively removes confounder influence from learned DNN features

R-MDN effectively removes confounder influence from learned DNN features

Method	Deviation of accuracy from (1) theoretical accuracy	
CNN Baseline	0.18 ± 0.00	
BR-Net	0.04 ± 0.03	
Stage-specific M	$100 0.25 \pm 0.00$	
P-MDN	0.04 ± 0.01	
R-MDN	$\textbf{0.02} \pm \textbf{0.01}$	

R-MDN is a normalization layer and can be tacked on to various model architectures

Skin lesion classification on HAM10K¹ dataset, with age as confounder

Example images from HAM10K

Accuracy	Average $dcor^2(\downarrow)$
0.7095 ± 0.0626	0.0864 ± 0.0336
0.7247 ± 0.0627	0.0544 ± 0.0534
0.6750 ± 0.0945	0.2595 ± 0.0620
0.5503 ± 0.0541	0.0928 ± 0.0630
0.5288 ± 0.0571	0.0739 ± 0.0555
0.6919 ± 0.0723	$\pmb{0.0475 \pm 0.0247}$
0.6437 ± 0.0586 0.6739 ± 0.0686	0.0938 ± 0.0506 0.0592 ± 0.0488
0.7356 ± 0.0757	0.0512 ± 0.0407
0.7186 ± 0.0736	0.0354 ± 0.0210
0.6849 ± 0.0745	0.0470 ± 0.0304
	0.7095 ± 0.0626 0.7247 ± 0.0627 0.6750 ± 0.0945 0.5503 ± 0.0541 0.5288 ± 0.0571 0.6919 ± 0.0723 0.6437 ± 0.0586 0.6739 ± 0.0686 0.7356 ± 0.0757 0.7186 ± 0.0736

¹Tschandl et al. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. In Scientific Data, 2018.

R-MDN can remove the influence from multiple confounders

Diagnostic classification on ADNI^{1,2} dataset, with both age and sex as confounders

Example images from ADNI

¹Mueller et al. *The Alzheimer's Disease Neuroimaging Initiative*. In Neuroimaging Clinics of North America, 2005. ²Peterson et al. *Alzheimer's Disease Neuroimaging Initiative (ADNI) Clinical Characterization*. In Neurology, 2010.

R-MDN makes equitable predictions across population groups

Sex classification on ABCD¹ dataset, with Pubertal Development Score (PDS) as confounder

Example images from ABCD

Interested in knowing more?

ynshah@stanford.edu eadeli@stanford.edu