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Background / Motivation

Neural networks capable of representing their

jgg uncertainty are a crucial component of real-world
100 ML systems.
0
~100 In the continuous regression setting, deep
—388 ensembles (DEs) of Gaussian networks [1] have
B e s e proven highly effective due to their flexibility and

daccuracy.

Gaussian DE predictions on toy dataset.
Adapted from Figure 1 of [1].

[1] Lakshminarayanan, B., Pritzel, A., & Blundell, C. Simple and scalable predictive uncertainty estimation using deep
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However, no analogous approach exists for count regression, an important
subfield with many applications (estimating crowd size, inventory volume, traffic

flow, etc.).
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Uncertainty can be decomposed into two quantities: aleatoric (observation noise) and epistemic (model
misspecification). Aleatoric uncertainty is commonly estimated via a neural network’s predictive variance,
while epistemic uncertainty can be estimated by deep ensembles.

In order for a model to properly represent its aleatoric uncertainty, it must be able to output arbitrarily
high/low variance for any prediction. We call this property full heteroscedasticity.

Uncertain Confident
(high variance) (low variance)
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Without accurate aleatoric uncertainty, downstream estimates of epistemic uncertainty can be corrupted [2].

[2] Mucsanyi, B., Kirchhof, M., & Oh, S. J. Benchmarking uncertainty disentanglement: Specialized uncertainties for specialized
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Existing approaches to deep count regression output the parameters of common distributions
such as the Poisson or Negative Binomial.

These models are not fully heteroscedastic — they are constrained via equidispersion and
overdispersion respectively. Thus, they often misrepresent aleatoric uncertainty.
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Meanwhile, Gaussian networks have no such restrictions on their predictive variance, but
lack a key inductive bias for the counting setting — they model discrete probabilities with a
continuous density function.

Gaussian models must assign
probability density to infeasible
values, like 4.9 (not a count)
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Our Contribution
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We propose to train neural networks to output the
parameters of the Double Poisson [3] distribution.
We call our model the Deep Double Poisson
Network (DDPN).

DDPN is both discrete and fully heteroscedastic,
thus it can effectively model integer-valued targets
under various levels of aleatoric noise.

When ensembled, DDPN also provides calibrated
estimates of epistemic uncertainty.

[3] Efron, Bradley. Double exponential families and their use in generalized linear regression, 1986
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We show that DDPN exhibits learnable loss attenuation, which allows it to
discount the contribution of outliers / mislabels to its training objective.

Similar to a Gaussian model,

DDPN can dynamically / o o© P
down-weight the contribution of w’g'g"t.\‘.!. 2 ®o
individual inputs to the overall & sabe AR LA
loss by assigning them high LK Ny o
uncertainty, increasing its e i
robustness to outliers. “o .

@] » ®
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10 Ai ~ A x A
L = (— g; + Yifri — Yiyi (1 + log fi; —logyz-)>

o log%i | . . A
%(B) = bi ﬁJ (— g2’y + Aifri — Aiyi (1 + log fii — logyi))

To avoid uncertainty collapse, DDPN'’s learnable loss attenuation can be controlled through a
tunable modification to our proposed loss function.
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DDPN, both as an individual model and when ensembled, outperforms all baselines in terms of
accuracy and calibration.

Length of Stay COCO-People Inventory Reviews
MAE (J) CRPS () | MAE() CRPS (}) | MAE() CRPS (}) | MAE() CRPS ()

Poisson DNN  0.664 (0.01) 0.553 (0.01) | 1.099 (0.02) 0.851(0.01) | 1.023 (0.04) 0.706 (0.01) | 0.818 (0.01) 0.559 (0.00)

NB DNN 0.685(0.00) 0.570 (0.00) | 1.143 (0.05) 0.867 (0.01) | 1.020 (0.04) 0.708 (0.01) | 0.855 (0.01) 0.562 (0.00)
Gaussian DNN  0.599 (0.01) 0.453(0.02) | 1.219 (0.12) 0.866 (0.07) | 0.936 (0.01) 0.659 (0.00) | 0.452 (0.01) 0.323 (0.00)
Faithful Gaussian ~ 0.582 (0.00) 0.436 (0.01) | 1.082 (0.01) 0.879 (0.01) | 0.959 (0.03) 0.688 (0.02) | 0.428 (0.00) 0.428 (0.00)
Natural Gaussian ~ 0.597 (0.01)  0.439 (0.01) | 1.157 (0.04) 0.848 (0.02) | 0.958 (0.01) 0.675 (0.01) | 0.428 (0.01) 0.312 (0.00)
Bos-Gaussian  0.600 (0.01) 0.427 (0.01) | 1.055(0.01) 0.786 (0.00) | 0.935(0.01) 0.669 (0.01) | 0.420 (0.00) 0.306 (0.00)
By o-Gaussian  0.646 (0.01) 0.462 (0.01) | 1.085(0.01) 0.809 (0.00) | 0.923 (0.01) 0.653 (0.01) | 0.458 (0.01) 0.327 (0.00)
DDPN (ours)  0.502(0.01) 0.390 (0.04) | 1.135(0.08) 0.810 (0.03) | 0.906 (0.01) 0.632 (0.01) | 0.392 (0.01) 0.277 (0.00)
Bo.5s-DDPN (ours) 0.516 (0.01) 0.370 (0.01) | 1.095 (0.03) 0.782 (0.02) | 0.905 (0.02) 0.635 (0.01) | 0.356 (0.01) 0.268 (0.00)
f1.0-DDPN (ours)  0.558 (0.01) 0.407 (0.01) | 1.006 (0.01) 0.759 (0.01) | 0.909 (0.01) 0.634 (0.01) | 0.356 (0.00) 0.263 (0.00)

Aleatoric Only

o Poisson DNN 0.650 0.547 1.046 0.817 0.996 0.683 0.823 0.556
E NB DNN 0.681 0.567 1.066 0.824 0.982 0.686 0.857 0.560
; Gaussian DNN 0.590 0.450 1.148 0.815 0.902 0.634 0.447 0.319
g Faithful Gaussian 0.571 0.429 1.042 0.841 0.909 0.643 0.424 0.324
% Natural Gaussian 0.582 0.428 1.090 0.800 0.916 0.643 0.423 0.307
t3) Bo.5-Gaussian 0.591 0.420 1.019 0.740 0.879 0.619 0.414 0.302
t B1.0-Gaussian 0.633 0.453 1.050 0.765 0.887 0.624 0.455 0.324
5 DDPN (ours) 0.485 0.361 1.024 0.744 0.861 0.604 0.373 0.268
S | Bo.5-DDPN (ours) 0.495 0.359 1.029 0.729 0.840 0.590 0.358 0.261
< | B1.0-DDPN (ours) 0.543 0.393 0.959 0.712 0.859 0.597 0.344 0.257
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The total variance of DDPN DEs is a better OOD indicator than DEs of existing methods.

This is especially true in comparison to models that are not fully heteroscedastic (which
consequently suffer from poorly-estimated aleatoric + epistemic uncertainty).

AUROC (1)  AUPR () FPRS0 (1)
[ Poisson DNN 0.330 (0.001) 0.413 (0.000) 0.793 (0.001) ]
NB DNN 0.280 (0.001)  0.397 (0.000)  0.819 (0.002)
Gaussian DNN 0.840 (0.001) 0.812(0.005) 0.318 (0.002)
Faithful Gaussian ~ 0.731 (0.001)  0.670 (0.001)  0.380 (0.002)
Natural Gaussian ~ 0.836 (0.001) 0.827 (0.002) 0.317 (0.002)
Bo.5-Gaussian 0.829 (0.001) 0.797 (0.004)  0.323 (0.002)
B, o-Gaussian 0.817 (0.001)  0.806 (0.002) 0.338 (0.001)
DDPN (ours) 0.854 (0.001) 0.849 (0.003) 0.269 (0.002)
Bo.5-DDPN (ours) 0.887 (0.001) 0.875 (0.003)  0.199 (0.001)
$1.0-DDPN (ours)  0.870 (0.001) 0.851 (0.002)  0.236 (0.002)
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Single Network (DDPN) Deep Ensemble (DDPN DE)
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In-distribution vs. Out-of-distribution
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Feel free to stop by our poster (ID: 46290) between 11:00 am and 1:30 pm on Thursday, July 17th.



