

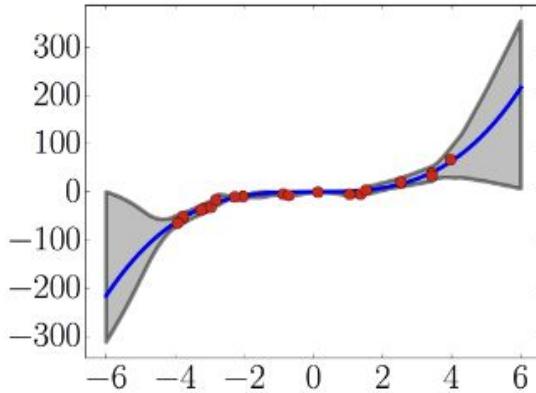
Fully Heteroscedastic Count Regression with Deep Double Poisson Networks

Spencer Young^{*1}, Porter Jenkins^{*2}, Longchao Da³, Jeff Dotson⁴, Hua Wei³

¹Delicious AI, ²Brigham Young University, ³Arizona State University, ⁴Ohio State University

*Equal contribution

Background / Motivation



Gaussian DE predictions on toy dataset.
Adapted from Figure 1 of [1].

Neural networks capable of representing their uncertainty are a crucial component of real-world ML systems.

In the *continuous* regression setting, deep ensembles (DEs) of Gaussian networks [1] have proven highly effective due to their flexibility and accuracy.

[1] Lakshminarayanan, B., Pritzel, A., & Blundell, C. Simple and scalable predictive uncertainty estimation using deep

Background / Motivation

However, no analogous approach exists for *count* regression, an important subfield with many applications (estimating crowd size, inventory volume, traffic flow, etc.).

Background / Motivation

Uncertainty can be decomposed into two quantities: *aleatoric* (observation noise) and *epistemic* (model misspecification). Aleatoric uncertainty is commonly estimated via a neural network's predictive variance, while epistemic uncertainty can be estimated by deep ensembles.

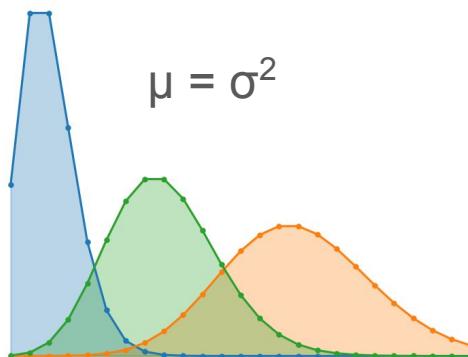
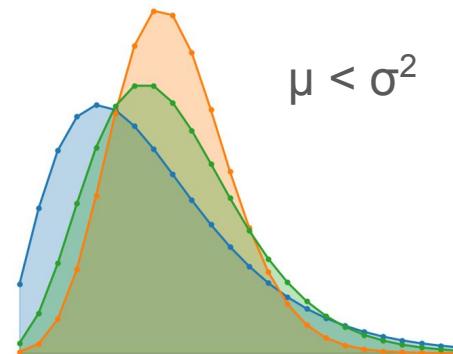
In order for a model to properly represent its aleatoric uncertainty, it must be able to output arbitrarily high/low variance for any prediction. We call this property *full heteroscedasticity*.

Without accurate aleatoric uncertainty, downstream estimates of epistemic uncertainty can be corrupted [2].

Background / Motivation

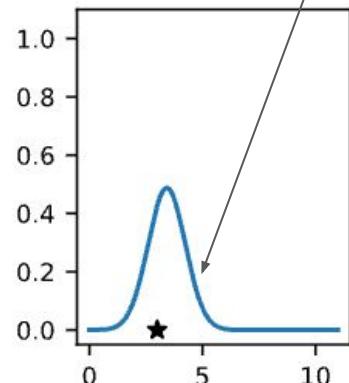
Existing approaches to deep count regression output the parameters of common distributions such as the Poisson or Negative Binomial.

These models are not fully heteroscedastic — they are constrained via *equidispersion* and *overdispersion* respectively. Thus, they often misrepresent aleatoric uncertainty.

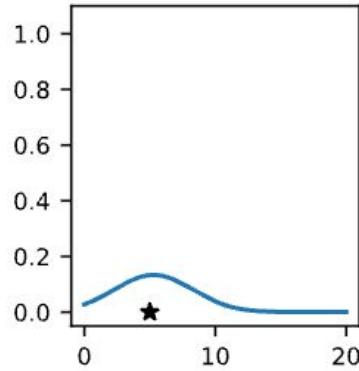


Background / Motivation

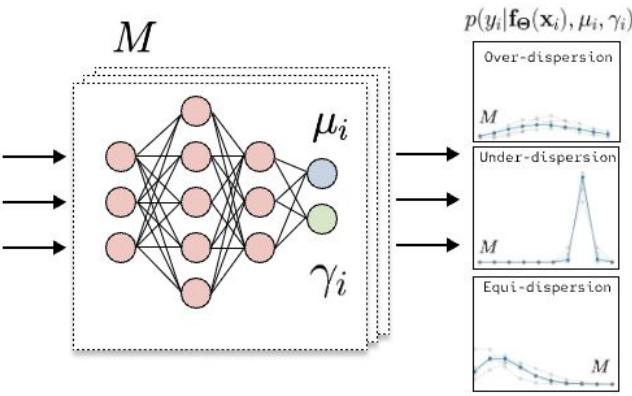
Meanwhile, Gaussian networks have no such restrictions on their predictive variance, but lack a key inductive bias for the counting setting — they model *discrete* probabilities with a *continuous* density function.



Gaussian models must assign probability density to infeasible values, like 4.9 (not a count)



Our Contribution



We propose to train neural networks to output the parameters of the Double Poisson [3] distribution. We call our model the *Deep Double Poisson Network* (DDPN).

DDPN is both discrete *and* fully heteroscedastic, thus it can effectively model integer-valued targets under various levels of aleatoric noise.

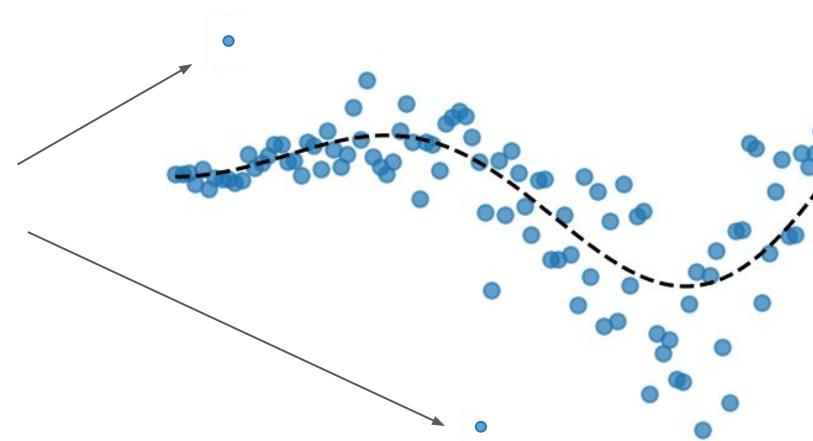
When ensembled, DDPN also provides calibrated estimates of epistemic uncertainty.

[3] Efron, Bradley. *Double exponential families and their use in generalized linear regression*, 1986

Our Contribution

We show that DDPN exhibits *learnable loss attenuation*, which allows it to discount the contribution of outliers / mislabels to its training objective.

Similar to a Gaussian model, DDPN can dynamically down-weight the contribution of individual inputs to the overall loss by assigning them high uncertainty, increasing its robustness to outliers.



Our Contribution

$$\mathcal{L}_i = \left(-\frac{\log \hat{\gamma}_i}{2} + \hat{\gamma}_i \hat{\mu}_i - \hat{\gamma}_i y_i (1 + \log \hat{\mu}_i - \log y_i) \right)$$

$$\mathcal{L}_i^{(\beta)} = \left[\hat{\gamma}_i^{-\beta} \right] \left(-\frac{\log \hat{\gamma}_i}{2} + \hat{\gamma}_i \hat{\mu}_i - \hat{\gamma}_i y_i (1 + \log \hat{\mu}_i - \log y_i) \right)$$

To avoid uncertainty collapse, DDPN's learnable loss attenuation can be controlled through a tunable modification to our proposed loss function.

Results

DDPN, both as an individual model and when ensembled, outperforms all baselines in terms of accuracy and calibration.

	Length of Stay		COCO-People		Inventory		Reviews	
	MAE (↓)	CRPS (↓)	MAE (↓)	CRPS (↓)	MAE (↓)	CRPS (↓)	MAE (↓)	CRPS (↓)
Aleatoric Only	Poisson DNN	0.664 (0.01)	0.553 (0.01)	1.099 (0.02)	0.851 (0.01)	1.023 (0.04)	0.706 (0.01)	0.818 (0.01) 0.559 (0.00)
	NB DNN	0.685 (0.00)	0.570 (0.00)	1.143 (0.05)	0.867 (0.01)	1.020 (0.04)	0.708 (0.01)	0.855 (0.01) 0.562 (0.00)
	Gaussian DNN	0.599 (0.01)	0.453 (0.02)	1.219 (0.12)	0.866 (0.07)	0.936 (0.01)	0.659 (0.00)	0.452 (0.01) 0.323 (0.00)
	Faithful Gaussian	0.582 (0.00)	0.436 (0.01)	1.082 (0.01)	0.879 (0.01)	0.959 (0.03)	0.688 (0.02)	0.428 (0.00) 0.428 (0.00)
	Natural Gaussian	0.597 (0.01)	0.439 (0.01)	1.157 (0.04)	0.848 (0.02)	0.958 (0.01)	0.675 (0.01)	0.428 (0.01) 0.312 (0.00)
	$\beta_{0.5}$ -Gaussian	0.600 (0.01)	0.427 (0.01)	<u>1.055</u> (0.01)	0.786 (0.00)	0.935 (0.01)	0.669 (0.01)	0.420 (0.00) 0.306 (0.00)
	$\beta_{1.0}$ -Gaussian	0.646 (0.01)	0.462 (0.01)	1.085 (0.01)	0.809 (0.00)	0.923 (0.01)	0.653 (0.01)	0.458 (0.01) 0.327 (0.00)
	DDPN (ours)	0.502 (0.01)	0.390 (0.04)	1.135 (0.08)	0.810 (0.03)	0.906 (0.01)	0.632 (0.01)	0.392 (0.01) 0.277 (0.00)
Aleatoric + Epistemic (DEs)	$\beta_{0.5}$ -DDPN (ours)	0.516 (0.01)	0.370 (0.01)	1.095 (0.03)	0.782 (0.02)	0.905 (0.02)	0.635 (0.01)	0.356 (0.01) 0.268 (0.00)
	$\beta_{1.0}$ -DDPN (ours)	0.558 (0.01)	0.407 (0.01)	1.006 (0.01)	0.759 (0.01)	0.909 (0.01)	0.634 (0.01)	0.356 (0.00) 0.263 (0.00)
	Poisson DNN	0.650	0.547	1.046	0.817	0.996	0.683	0.823 0.556
	NB DNN	0.681	0.567	1.066	0.824	0.982	0.686	0.857 0.560
	Gaussian DNN	0.590	0.450	1.148	0.815	0.902	0.634	0.447 0.319
	Faithful Gaussian	0.571	0.429	1.042	0.841	0.909	0.643	0.424 0.324
	Natural Gaussian	0.582	0.428	1.090	0.800	0.916	0.643	0.423 0.307
	$\beta_{0.5}$ -Gaussian	0.591	0.420	<u>1.019</u>	0.740	0.879	0.619	0.414 0.302
Aleatoric + Epistemic (DEs)	$\beta_{1.0}$ -Gaussian	0.633	0.453	1.050	0.765	0.887	0.624	0.455 0.324
	DDPN (ours)	0.485	<u>0.361</u>	1.024	0.744	0.861	0.604	0.373 0.268
	$\beta_{0.5}$ -DDPN (ours)	<u>0.495</u>	0.359	1.029	<u>0.729</u>	0.840	0.590	<u>0.358</u> <u>0.261</u>
	$\beta_{1.0}$ -DDPN (ours)	0.543	0.393	0.959	0.712	0.859	0.597	0.344 0.257

Results

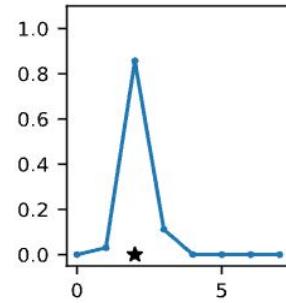
The total variance of DDPN DEs is a better OOD indicator than DEs of existing methods.

This is especially true in comparison to models that are not fully heteroscedastic (which consequently suffer from poorly-estimated aleatoric + epistemic uncertainty).

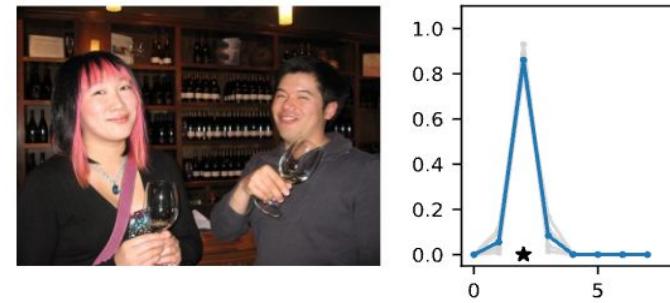
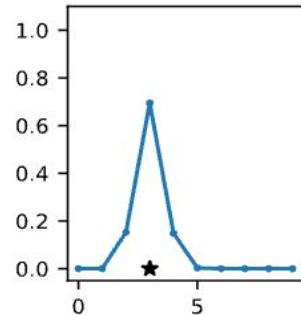
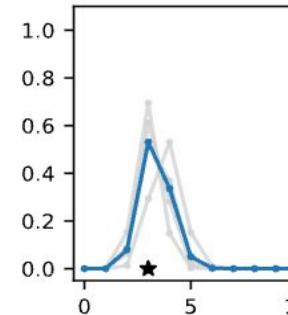
	AUROC (↑)	AUPR (↑)	FPR80 (↓)
Poisson DNN	0.330 (0.001)	0.413 (0.000)	0.793 (0.001)
NB DNN	0.280 (0.001)	0.397 (0.000)	0.819 (0.002)
Gaussian DNN	0.840 (0.001)	0.812 (0.005)	0.318 (0.002)
Faithful Gaussian	0.731 (0.001)	0.670 (0.001)	0.380 (0.002)
Natural Gaussian	0.836 (0.001)	0.827 (0.002)	0.317 (0.002)
$\beta_{0.5}$ -Gaussian	0.829 (0.001)	0.797 (0.004)	0.323 (0.002)
$\beta_{1.0}$ -Gaussian	0.817 (0.001)	0.806 (0.002)	0.338 (0.001)
DDPN (ours)	0.854 (0.001)	0.849 (0.003)	0.269 (0.002)
$\beta_{0.5}$ -DDPN (ours)	0.887 (0.001)	0.875 (0.003)	0.199 (0.001)
$\beta_{1.0}$ -DDPN (ours)	<u>0.870</u> (0.001)	<u>0.851</u> (0.002)	<u>0.236</u> (0.002)

Example Predictions

Single Network (DDPN)

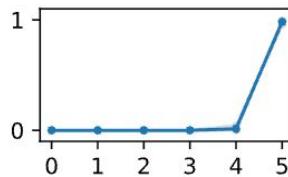


Deep Ensemble (DDPN DE)



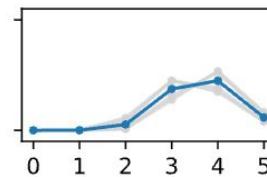
In-distribution vs. Out-of-distribution

"Works just like the other two units that I already have. Love the trickle charge feature and ease of connection."



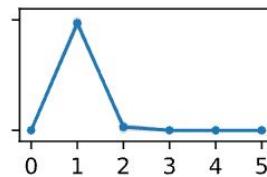
"And to Seth, to him also there was born a son; and he called his name Enos: then began men to call upon the name of the LORD."

"A bit flimsy but value has yet to be determined as well as durability"



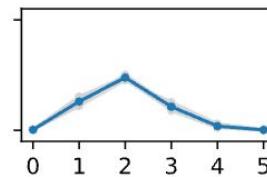
"And he left off talking with him, and God went up from Abraham."

"Useless! not sharp enough to cut branches, totally overpriced!!!"

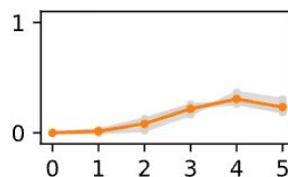
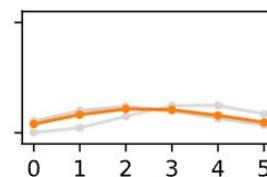
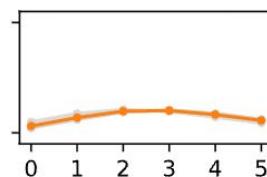
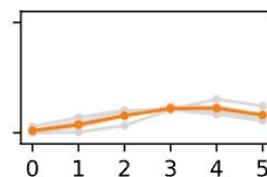


"And Moses returned unto the LORD, and said, Lord, wherefore hast thou so evil entreated this people? why is it that thou hast sent me?"

"Not a good product as it leaks everywhere. Not much more to say it was not usable as it would leak water and chemical from the top spout."



"And they pitched by Jordan, from Bethjesimoth even unto Abel-shittim in the plains of Moab."



Further Details

Paper

Code

Feel free to stop by our poster (ID: 46290) between 11:00 am and 1:30 pm on Thursday, July 17th.