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Motivation & Problem Statement

e Goal: In open-world settings, DNNs must detect novel concepts and maximize
forward transfer to facilitate efficient learning.

e Research Question: How can we build representations in a DNN to simultaneously
achieve both OOD detection and generalization?

e Challenge: Optimizing OOD detection hurts OOD generalization and vice-versa.

e TL;DR: We developed a method for jointly optimizing the OOD detection and
forward transfer (OOD generalization) based on the Neural Collapse phenomenon.
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What is Neural Collapse?

e Neural Collapse (NC) arises when class features become tightly clustered, often
converging toward a Simplex Equiangular Tight Frame (ETF)

e Neural collapse is characterized by following four criteria:

NCA1: feature collapse
NC2: simplex ETF structure
NC3: self-duality

NC4: nearest class mean decision
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Neural Collapse Insights

‘l e Observation: Increasing neural collapse improves OOD detection but hinders
OOD generalization and vice-versa.
e Takeaway: A single feature space cannot simultaneously achieve both tasks.

Y OOD Detection = R=0.77
® QOODTransfer =—— R= —0.60
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Correlation between NC & OOD detection/ generalization




Method Overview: Controlling NC

> Asingle feature space cannot effectively achieve both OOD detection and
generalization.

> To address this, we control NC at different DNN layers, using an encoder
optimized for generalization and a projector tailored for detection.
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Method Overview: Controlling NC

e Layer for OOD generalization: entropy regularization mitigates NC in the
encoder — improves feature diversity for OOD generalization.

e Layer for OOD detection: a fixed simplex ETF projector increases NC in the
final layer — improves feature compactness for OOD detection.
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Entropy Vs. Neural Collapse

Neural Collapse (NC1) correlates with entropy. The stronger the neural
collapse, the lower the entropy and vice-versa.

It suggests that increasing entropy of encoder embeddings may decrease
NC and increase OOD generalization
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Qualitative Results: Encoder Vs. Projector

e Projector embeddings exhibit significantly stronger neural
collapse—evidenced by 5.6x lower NC1 and tighter clustering around
class means—compared to encoder embeddings.

e \We show 10 ImageNet classes by distinct colors.

Encoder Embeddings Projector Embeddings
(NC1 =2.18) (NC1 =0.39)
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Results: Encoder Vs. Projector

We train various DNNs on ImageNet-100 (ID) and use eight OOD datasets for
evaluations. Reported results are averaged across eight OOD datasets.

The encoder mitigates NC and becomes a better OOD generalizer than the projector.

The projector intensifies NC and becomes a better OOD detector than the encoder.
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OOD Detection Error (%)
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Results: Comparison with Baseline 10

We train various DNNs on ImageNet-100 (ID) and use eight OOD datasets for
evaluations. Reported results are averaged across eight OOD datasets.

Baseline DNNs lack mechanisms to control NC, resulting in poor performance.

Our method controls NC and achieves significant improvements over the baselines.
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Summary

We demonstrated that Neural Collapse has an inverse relationship with OOD
detection and generalization

Motivated by this inverse relationship, our method enhances OOD detection
by enforcing NC while promoting OOD generalization by mitigating NC.

Our method excels at both OOD detection & generalization tasks without any
additional OOD training data.

This work has implications for open-world problems where both OOD
detection and generalization are critical.
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Thank You

Paper Link:
https://arxiv.org/abs/2502.10691
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