

Controlling Neural Collapse Enhances Out-of-Distribution Detection and Transfer Learning

Md Yousuf Harun¹, Jhair Gallardo¹, Christopher Kanan²

¹Rochester Institute of Technology, University of Rochester

Project Website

Motivation & Problem Statement

- Goal: In open-world settings, DNNs must detect novel concepts and maximize forward transfer to facilitate efficient learning.
- Research Question: How can we build representations in a DNN to simultaneously achieve both OOD detection and generalization?
- Challenge: Optimizing OOD detection hurts OOD generalization and vice-versa.
- **TL;DR:** We developed a method for jointly optimizing the OOD detection and forward transfer (OOD generalization) based on the **Neural Collapse** phenomenon.

Constraints:

- No Semantic overlap between ID & OOD
- No access to additional OOD training data

What is Neural Collapse?

- Neural Collapse (NC) arises when class features become tightly clustered, often converging toward a Simplex Equiangular Tight Frame (ETF)
- Neural collapse is characterized by following four criteria:
 - NC1: feature collapse
 - NC2: simplex ETF structure
 - NC3: self-duality
 - NC4: nearest class mean decision

Neural Collapse Insights

- Observation: Increasing neural collapse improves OOD detection but hinders
 OOD generalization and vice-versa.
- Takeaway: A single feature space cannot simultaneously achieve both tasks.

Correlation between NC & OOD detection/ generalization

Method Overview: Controlling NC

- A single feature space cannot effectively achieve both OOD detection and generalization.
- To address this, we control NC at different DNN layers, using an encoder optimized for generalization and a projector tailored for detection.

Method Overview: Controlling NC

- Layer for OOD generalization: entropy regularization mitigates NC in the encoder → improves feature diversity for OOD generalization.
- Layer for OOD detection: a fixed simplex ETF projector increases NC in the final layer → improves feature compactness for OOD detection.

Entropy Vs. Neural Collapse

- Neural Collapse (NC1) correlates with entropy. The stronger the neural collapse, the lower the entropy and vice-versa.
- It suggests that increasing entropy of encoder embeddings may decrease
 NC and increase OOD generalization

Qualitative Results: Encoder Vs. Projector

- Projector embeddings exhibit significantly stronger neural collapse–evidenced by 5.6x lower NC1 and tighter clustering around class means–compared to encoder embeddings.
- We show 10 ImageNet classes by distinct colors.

Encoder Embeddings (NC1 = 2.18)

Projector Embeddings (NC1 = 0.39)

UMAP visualization of embedding

Results: Encoder Vs. Projector

- We train various DNNs on ImageNet-100 (ID) and use eight OOD datasets for evaluations. Reported results are averaged across eight OOD datasets.
- The encoder mitigates NC and becomes a better OOD generalizer than the projector.
- The projector intensifies NC and becomes a better OOD detector than the encoder.

Results: Comparison with Baseline

- We train various DNNs on ImageNet-100 (ID) and use eight OOD datasets for evaluations. Reported results are averaged across eight OOD datasets.
- Baseline DNNs lack mechanisms to control NC, resulting in poor performance.
- Our method controls NC and achieves significant improvements over the baselines.

Summary

- We demonstrated that Neural Collapse has an inverse relationship with OOD detection and generalization
- Motivated by this inverse relationship, our method enhances OOD detection by enforcing NC while promoting OOD generalization by mitigating NC.
- Our method excels at both OOD detection & generalization tasks without any additional OOD training data.
- This work has implications for open-world problems where both OOD detection and generalization are critical.

Thank You

Paper Link:

https://arxiv.org/abs/2502.10691