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Motivation

>

Recently, notable progress has been made in skill-based deep RL models, showing promising results in complex
environments and robot manipula tions

However, the use of fixed-length skills and the absence of appropriate termination conditions often restrict them from
making decisions at critical decision points (e.g., crossroads), which can result in significant loss in performance

X(Ski1, 1) = 0.05 ELEURGERIILE e IL T, P PR IR I M BN Open the Slide Cabinet

X(S[]J aﬂ) ~ 0.05 X(Sk: ak) ~ 0.33

Open the Left Hinge
Cabinet

X(Sg+1,a5+1) = 0.04




Introduction

» While maximizing skill length is advantageous in terms of temporal abstraction, extended skills can result in
suboptimal behavior, especially when the skills are derived from task-agnostic trajectories.

» Such suboptimality of extended skills (or options) can be theoretically quantified using the termination improvement
theorem (Sutton, 1998).
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Method

» In this work, we propose to use state-action novelty to identify critical decision points for skill termination, which leads
to the execution of variable-length skills.

» In particular, we use Iintrinsic curiosity module (ICM) (Pathak et al., 2017) as our state-action novelty estimator

0 2000 4000 6000 8000

x | |
1251 (A) ™ - (A)
o 100 S (C)
- (B) = 60- &
LLJ (C) W
s 7> S
= (A) (B) (©) = 40 (A) (B) (©
Y 50 | U
3 B
& 25 i) | L L & 207 fodit | I .
01 | . i 01 ' ' L (D
0 1000 2000 3000
State-Action in 25 trajectories (D) (E) (F) (D) (E) (F)

State-Action in 25 trajectories




—— BC+SAC

Experiments
—— NBDI (Ours)
0.3 0.3
S ot
T 0.2 g o2
vk U
8 0. % 0.1
5 5
U //;M N
0.0 £ | 0.0
00 05 10 15 2.0 0.0 0.5

Environment steps (1M)

(a) Maze 40 x 40 Navigation

1.0
Environment steps (1M)

(b) Maze 30 x 30 Navigation

(¢) Sparse Block Stacking
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ENVIRONMENT SAC SPIRL NBDI IMPROVEMENT OVER SPIRL (%)
MAZE 30X30 (Success rate) 0.044+0.03 0.13+£0.03 0.244+0.01 84.62
MAZE 40x40 (Success rate) 0.01+£0.01 0.09+0.02 0.25+0.02 177.78
SPARSE BLOCK STACKING (Stacked Blocks) 0.144+0.28 0.67+0.29 1.12+0.16 67.16
KITCHEN (Completed Subtasks) 0.0+0.0 3.0£0.0 3.67+0.43 22.33
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(a) Visitation(SPiRL)

(b) Visitation(NBDI)

(c) Skill Terminat.(SP1RL) (d) Skill Terminat.(NBDI)
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