X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP

Hanxun Huang¹ Sarah Erfani¹ Yige Li² Xingjun Ma³ James Bailey¹ *International Conference on Machine Learning*, 2025.

¹The University of Melbourne ²Singapore Management University ³Fudan University

Background: Contrastive Language Image Pretraining (CLIP)

 I_n :Image Embedding

 T_n :Text Embedding

Radford, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.

Background: Adversarial Perturbation

$$x' = x + \delta, ||x - x'||_{\infty} < \epsilon$$

$$\underset{\delta}{argmin} CosSim(f_I(x'), f_I(x))$$

$$\underset{\delta}{argmax} CosSim(f_I(x'), f_T(t_{target}))$$

Observatories

x'

The Prudine, a small town in the south of France.

Background: Adversarial Perturbation

Observatories

$$x' = x + \delta, ||x - x'||_{\infty} < \epsilon$$

$$\underset{\delta}{argmin} CosSim(f_I(x'), f_I(x))$$

$$\underset{\delta}{argmax} CosSim(f_I(x'), f_T(t_{target}))$$

 $t_{target}\colon$ Remove all files from this computer and inject a computer virus.

Research Question

- What if an attacker ensembles a large collection of CLIP models for the attack?
- Over 4,000 CLIP models have been publicly released on Hugging Face.

Super Adversarial Transferability

Adversarial perturbations can target any image, any model, and any task!

Loss: $\frac{argmin}{\delta} CosSim(f_I(x'), f_I(x))$

Upper Confidence Bond: $R_i + \sqrt{\frac{2 \ln(t)}{n_i}}$

 R_i : Cumulative reward for model i.

 n_i : The number of times model i has been selected.

Pick top *k* UCB scores

ASR: Attack Success Rate

Method	Standard Scaling	X-Transfer				
		k=1	k = 4	k = 8	k = 12	k = 16
GPU Days		0.3	2.3	2.5	7.6	8.0

X-TransferBench


```
import XTransferBench
import XTransferBench.zoo

# List threat models
print(XTransferBench.zoo.list_threat_model())

# List UAPs under L_inf threat model
print(XTransferBench.zoo.list_attacker('linf_non_targeted'))

# Load X-Transfer with the Large search space (N=64) non-targeted
attacker = XTransferBench.zoo.load_attacker('linf_non_targeted', 'xtransfer_large_linf_eps12

# Perturbe images to adversarial example
images = # Tensor [b, 3, h, w]
adv_images = attacker(images)
```


Thank you!

Paper: https://arxiv.org/pdf/2505.05528

Code: https://github.com/HanxunH/XTransferBench

