
Nesterov Method for Asynchronous Pipeline Parallel
Optimization

Thalaiyasingam Ajanthan, Sameera Ramasinghe, Yan Zuo, Gil Avraham & Alexander Long

Pluralis Research

ICML

16th July 2025

Asynchronous Training in Distributed Networks

● Distributed training infrastructure is
heterogeneous and low-bandwidth

● Synchronous training is prone to
“sync bubbles” – idle time

● Asynchronous training eliminates
these bubbles

● Though challenging in both DP, PP

Pipeline Parallel

● Pipeline Parallel splits the model across the layer dimension over multiple devices

● This approach was initially designed for synchronous setup

Image credit: https://battox.medium.com/pipeline-parallelism-in-pytorch-dc439f7573e9

Pipeline Parallel: Scheduling

● Pipeline Parallel research
focused on synchronous
systems

● Methods propose various
scheduling to reduce
“bubbles”/reduce memory
requirements

● Gpipe, 1F1B,
Interleaved 1F1B,
ZeroBubble, etc.

Image credit: https://developer.nvidia.com/blog/scaling-language-model-training-to-a-trillion-parameters-using-megatron/

Gpipe

1F1B

Pipeline Parallel: Asynchronous

● Asynchronous Pipeline
Parallel update stage
weights without waiting

● These methods have
no pipeline flush bubble

● Issues such as stale
gradients and outdated
weights

● Notable methods:
Pipedream, PipeMare

Image credit: https://arxiv.org/pdf/1806.03377

Pipedream

Each machine alternates between forward
and backward passes asynchronously

Pipeline Parallel

Formally, for a model split into P pipeline stages

Similar, for the backwards:

Where is the error signal at stage P

Synchronous Pipeline Parallel

No discrepancy between weights and gradients

Asynchronous Pipeline Parallel: PipeDream

Gradients are delayed, causing incorrect weight updates

Narayanan et al, Pipedream: Generalized pipeline parallelism for dnn training

Nesterov Accelerated Gradient (NAG)

● Nesterov Accelerated Gradient (NAG)
has optimal convergence rate for
smooth convex functions in non stochastic settings

● The momentum term s satisfies

● NAG intuition: reduces overshooting and stabilizes training by
computing the gradients in velocity adjusted step (look-ahead)

Yurii Nesterov. Introductory lectures on convex optimization: A basic course

NAG for Delay Correction

● Recall for async Pipeline Parallel:

● Incorrect weight update stems from stale gradients

● If the weight delay is defined as:

● Intuition: NAG look-ahead operates as delay correction:

NAG for Delay Correction

Results: NanoGPT on WikiText

● Our asynchronous method outperforms synchronous GPipe

Results: Multiple Datasets

● Our asynchronous method outperforms synchronous GPipe

Results: Delay Correction Methods

● Our NAG method outperforms other delay correction methods

Results: Increasing the No of Stages

● Even though, performance slightly degrades for our method
compared to GPipe, the training time increase is exponentially
larger for GPipe

Thank you

