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Asynchronous Training in Distributed Networks

● Distributed training infrastructure is 
heterogeneous and low-bandwidth

● Synchronous training is prone to 
“sync bubbles” – idle time

● Asynchronous training eliminates 
these bubbles

● Though challenging in both DP, PP



Pipeline Parallel

● Pipeline Parallel splits the model across the layer dimension over multiple devices

● This approach was initially designed for synchronous setup

Image credit: https://battox.medium.com/pipeline-parallelism-in-pytorch-dc439f7573e9



Pipeline Parallel: Scheduling

● Pipeline Parallel research 
focused on synchronous 
systems

● Methods propose various 
scheduling to reduce 
“bubbles”/reduce memory 
requirements

● Gpipe, 1F1B, 
Interleaved 1F1B, 
ZeroBubble, etc.

Image credit: https://developer.nvidia.com/blog/scaling-language-model-training-to-a-trillion-parameters-using-megatron/

Gpipe

1F1B



Pipeline Parallel: Asynchronous

● Asynchronous Pipeline 
Parallel update stage 
weights without waiting

● These methods have 
no pipeline flush bubble 

● Issues such as stale 
gradients and outdated 
weights

● Notable methods: 
Pipedream, PipeMare

Image credit: https://arxiv.org/pdf/1806.03377

Pipedream

Each machine alternates between forward 
and backward passes asynchronously



Pipeline Parallel

Formally, for a model split into P pipeline stages

Similar, for the backwards:

Where  is the error signal at stage P  



Synchronous Pipeline Parallel

No discrepancy between weights and gradients



Asynchronous Pipeline Parallel: PipeDream

Gradients are delayed, causing incorrect weight updates

Narayanan et al, Pipedream: Generalized pipeline parallelism for dnn training



Nesterov Accelerated Gradient (NAG)

● Nesterov Accelerated Gradient (NAG) 
has optimal              convergence rate for 
smooth convex functions in non stochastic settings

● The momentum term   s satisfies

● NAG intuition: reduces overshooting and stabilizes training by 
computing the gradients in velocity adjusted step (look-ahead)

Yurii Nesterov. Introductory lectures on convex optimization: A basic course



NAG for Delay Correction

● Recall for async Pipeline Parallel:

● Incorrect weight update stems from stale gradients

● If the weight delay is defined as:

● Intuition: NAG look-ahead operates as delay correction:



NAG for Delay Correction



Results: NanoGPT on WikiText

● Our asynchronous method outperforms synchronous GPipe



Results: Multiple Datasets

● Our asynchronous method outperforms synchronous GPipe



Results: Delay Correction Methods

● Our NAG method outperforms other delay correction methods



Results: Increasing the No of Stages

● Even though, performance slightly degrades for our method 
compared to GPipe, the training time increase is exponentially 
larger for GPipe
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