ICML

PR

Nesterov Method for Asynchronous Pipeline Parallel
Optimization

Thalaiyasingam Ajanthan, Sameera Ramasinghe, Yan Zuo, Gil Avraham & Alexander Long

Pluralis Research

16" July 2025

Asynchronous Training in Distributed Networks

e Distributed training infrastructure is
heterogeneous and low-bandwidth . o
> <
2 @/J\
e Synchronous training is prone to —) '

“sync bubbles” - idle time |

s

e Asynchronous training eliminates
these bubbles

e Though challenging in both DP, PP

Pipeline Parallel

o -— o~ o) <t 5 -

5 split the model
*3—-%~%—-%~%_.%_.%~a asrossmultile
= 3 8 3 3 kS 8 3 nultip

E R = E E E| © machines
node 0 node 1 node 2
input = = 3 = . .
2 o © ® b o
3 § 3 3 E §
o E 2 S g E
output «----—-----_-] E 2 2

e Pipeline Parallel splits the model across the layer dimension over multiple devices

e This approach was initially designed for synchronous setup

Image credit: https://battox.medium.com/pipeline-parallelism-in-pytorch-dc439f7573e9

Pipeline Parallel: Scheduling

e Pipeline Parallel research
focused on synchronous
systems

e Methods propose various
scheduling to reduce
“bubbles”/reduce memory
requirements

e Gpipe, 1F1B,
Interleaved 1F1B,
ZeroBubble, etc.

Gpipe
Pipeline flush
DIVl -Ml 1 2345678 102 |3|4|5] 6 M 9 10111213141516
Device 2 12345678 2 (3|4 |5]|6]|7 9 10111213141516
Device 3 12345678 3|4 |5|6|7]|8 9 10111213141516 H
Device 4 123456738 4|5 |6/|7]s8 9 10111213141515“
Time —— Devices idle

Device 1
Device 2
Device 3
Device 4

B rorward Pass [| BackwardPass

Pipeline flush

n n9101112 n
B:aneEoDEn g
n 9101112“13“

9“10“1112

Time — Devices idle

Forward Pass [] BackwardPass

Image credit: https://developer.nvidia.com/blog/scaling-language-model-training-to-a-trillion-parameters-using-megatron/

Pipeline Parallel: Asynchronous

Pipedream
e Asynchronous Pipeline S , Q@ | 1 : E N P
Parallel update stage . W\ X
weights without waiting Machine 2 ' N H H E
Machine3 N\ s BANEI S s 7 K
e These methods have . §& 1 : 5
no pipeline flush bubble Maciied: NN d KK
e Issues such as stale Startup State Steady State
: >
gradients and outdated Time
WEightS B rorwardwWork [| Backward Work NNy Idle
* Notable methods: Each machine alternates between forward

Pipedream, PipeMare and backward passes asynchronously

Image credit: https://arxiv.org/pdf/1806.03377

Pipeline Parallel

Formally, for a model split into P pipeline stages

F(W,x0) = fpo fp-10---0 fi(xo)

Similar, for the backwards:
G(W7 eP) =0g1©gG20--:0 gp(ep)

Where € p is the error signal at stage P

Synchronous Pipeline Parallel

No discrepancy between weights and gradients

Vfi(w;) = hi(w;, e;)

1

t .t

) — w, | =w; -V fi(w])
e,_1 = gi(w;,€;)

{F(W,XO) = fpofp_10-:0 ﬁ(m)}
G(W,ep) :=gi0gz0---0ogp(ep)

Asynchronous Pipeline Parallel: PipeDream

Gradients are delayed, causing incorrect weight updates

sz(wf) — hZ(W§7 e?) Vfi(wz_t—n) _ hi(wit—T«i’eit—T«i+1)
—>

{/
.t—’f‘i

e;_; = g;(w;, e ei—1' " = gi(w;' T e i)

wi | =w; —nVfi(w;) —» wi T =wi —nVfi(w'T)

Narayanan et al, Pipedream: Generalized pipeline parallelism for dnn training

Nesterov Accelerated Gradient (NAG)

e Nesterov Accelerated Gradient (NAG)
has optimal O(t%) convergence rate for
smooth convex functions in non stochastic settings

e The momentum term; satisfies v; = 0,0 < v < 1

e NAG intuition: reduces overshooting and stabilizes training by
computing the gradients in velocity adjusted step (look-ahead)

d; = %(Wt — Wt—l)
W; + dt — HVf(Wt + dt)

Yurii Nesterov. Introductory lectures on convex optimization: A basic course

Wit

NAG for Delay Correction PR

e Recall for async Pipeline Parallel:
V 3 ¢ — hz t At v p Wit—ﬂ; — hz Wit_Ti,eit_TH—l
fi(w!) = hy(wl, ef) Fi(wit =) = B)

17 71
t

€i—1 = gi(W;ﬁ? ef) €1 = gi(wit_Tiveit_THl)
e Incorrect weight update stems from stale gradients

e If the weight delay is defined as:

Wi =W =W, — Ay, di =d;, .
e Intuition: NAG look-ahead operates as delay correction:

wip1 =wy +dp — (1l —3) V(W +dy) .

NAG for Delay Correction

Figure 1: Original NAG (left) and our modified version
(right) for delayed gradients (denoted with g;). Our method
discounts the gradient term by (1 — ;). When ~ — 1,
the angle o« — 0, making the weight trajectory smoother.
Consequently, the look-ahead d; can be shown to act as
delay correction, alleviating gradient staleness.

Results: NanoGPT on WikiText

GPipe
PipeDream
PipeMare
Ours
Ours-No-WS

Training Loss

%1000 lterations

e Our asynchronous method outperforms synchronous GPipe

Results: Multiple Datasets

Method WT BC OWT | Memory
GPipe 30.63 42.39 65.17 O(N)
PipeDream 9948 5298 22430 | O(PN)
PipeMare 71.38 7693 239.13 | O(N)
Ours 27.72 3985 6286 | O(PN)
Ours-No-WS | 29.90 42.61 10820 | O(N)

e Our asynchronous method outperforms synchronous GPipe

Results: Delay Correction Methods

—— PipeDream
7 PipeDream-LR
| —+— LR+SecondOrder
—— Polynomial+FFT

Training Loss

%1000 lterations

e Our NAG method outperforms other delay correction methods

Results: Increasing the No of Stages

5.0
V45
(O]

£ 4.0

Xas

w 3.0
o 2.5

0 2.0
o 1.5
(=

€10
® o5

0.0

Bl GPipe
s Ours

4 8 12 16 20 24

No of Stages

[=
o N

Training Time (hr)
A O ©©

N

0

Em GPipe
B Ours

4 8 12 16 20 2

No of Stages

4

e Even though, performance slightly degrades for our method
compared to GPipe, the training time increase is exponentially
larger for GPipe

Thank you

