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Asynchronous Training in Distributed Networks

e Distributed training infrastructure is
heterogeneous and low-bandwidth . o
> <
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e Synchronous training is prone to —) '

“sync bubbles” - idle time |
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e Asynchronous training eliminates
these bubbles

e Though challenging in both DP, PP



Pipeline Parallel
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e Pipeline Parallel splits the model across the layer dimension over multiple devices

e This approach was initially designed for synchronous setup

Image credit: https://battox.medium.com/pipeline-parallelism-in-pytorch-dc439f7573e9



Pipeline Parallel: Scheduling

e Pipeline Parallel research
focused on synchronous
systems

e Methods propose various
scheduling to reduce
“bubbles”/reduce memory
requirements

e Gpipe, 1F1B,
Interleaved 1F1B,
ZeroBubble, etc.
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Image credit: https://developer.nvidia.com/blog/scaling-language-model-training-to-a-trillion-parameters-using-megatron/



Pipeline Parallel: Asynchronous

Pipedream
e Asynchronous Pipeline S , Q@ | 1 : E N P
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* Notable methods: Each machine alternates between forward

Pipedream, PipeMare and backward passes asynchronously

Image credit: https://arxiv.org/pdf/1806.03377



Pipeline Parallel

Formally, for a model split into P pipeline stages

F(W,x0) = fpo fp-10---0 fi(xo)

Similar, for the backwards:
G(W7 eP) =0g1©gG20--:0 gp(ep)

Where € p is the error signal at stage P



Synchronous Pipeline Parallel

No discrepancy between weights and gradients

Vfi(w;) = hi(w;, e;)
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) — w, | =w; -V fi(w])
e,_1 = gi(w;,€;)

{F(W,XO) = fpofp_10-:0 ﬁ(m)}
G(W,ep) :=gi0gz0---0ogp(ep)



Asynchronous Pipeline Parallel: PipeDream

Gradients are delayed, causing incorrect weight updates

sz(wf) — hZ(W§7 e?) Vfi(wz_t—n) _ hi(wit—T«i’eit—T«i+1)
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Narayanan et al, Pipedream: Generalized pipeline parallelism for dnn training



Nesterov Accelerated Gradient (NAG)

e Nesterov Accelerated Gradient (NAG)
has optimal O(t%) convergence rate for
smooth convex functions in non stochastic settings

e The momentum term; satisfies v; = 0,0 < v < 1

e NAG intuition: reduces overshooting and stabilizes training by
computing the gradients in velocity adjusted step (look-ahead)

d; = %(Wt — Wt—l)
W; + dt — HVf(Wt + dt)

Yurii Nesterov. Introductory lectures on convex optimization: A basic course
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NAG for Delay Correction PR

e Recall for async Pipeline Parallel:
V 3 ¢ — hz t At v p Wit—ﬂ; — hz Wit_Ti,eit_TH—l
fi(w!) = hy(wl, ef) Fi(wit =) = B )
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€i—1 = gi(W;ﬁ? ef) €1 = gi(wit_Tiveit_THl)
e Incorrect weight update stems from stale gradients

e If the weight delay is defined as:

Wi =W =W, — Ay, di =d;, .
e Intuition: NAG look-ahead operates as delay correction:

wip1 =wy +dp — (1l —3) V(W +dy) .




NAG for Delay Correction

Figure 1: Original NAG (left) and our modified version
(right) for delayed gradients (denoted with g;). Our method
discounts the gradient term by (1 — ;). When ~ — 1,
the angle o« — 0, making the weight trajectory smoother.
Consequently, the look-ahead d; can be shown to act as
delay correction, alleviating gradient staleness.



Results: NanoGPT on WikiText
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e Our asynchronous method outperforms synchronous GPipe



Results: Multiple Datasets

Method WT BC OWT | Memory
GPipe 30.63 42.39  65.17 O(N)
PipeDream 9948 5298 22430 | O(PN)
PipeMare 71.38 7693 239.13 | O(N)
Ours 27.72 3985 6286 | O(PN)
Ours-No-WS | 29.90 42.61 10820 | O(N)

e Our asynchronous method outperforms synchronous GPipe



Results: Delay Correction Methods
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e Our NAG method outperforms other delay correction methods



Results: Increasing the No of Stages
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e Even though, performance slightly degrades for our method
compared to GPipe, the training time increase is exponentially
larger for GPipe
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