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Tree ensembles are easy to configure, fast to learn,

performant, and solve real problems
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Complex ensembles increase performance, but yield
other problems
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Robust to evasion attacks?

1. Hard to verify

Fair, e.q., causal discrimination?

Solution: Simplify the ensemble by pruning (sub)trees!

2. Not ideal for resource constrained devices




LOP: Level-wise Optimization and Pruning

[Devos et al. ICML'2025]
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Given: Learned tree ensemble

Do: Compress the model s.t. lose < 0.5 percentage points of
performance on validation data by removing
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LOP: Level-wise Optimization and Pruning

[Devos et al. ICML'2025]
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Given: Learned tree ensemble

Do: Compress the model s.t. lose < 0.5 percentage points of
performance on validation data by removing

1. Full trees
2. Subtrees
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Intuition of our approach
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o If these leave values were nearly identical: Replace Y < 30 with a leaf
o Problem: Doing so would decrease this tree’s performance
o Solution: Fine-tune leaves in other trees to compensate

Our idea: Formulate global optimization problems to

encourage such compression and compensation!



Q1: How does LOP compare to existing approaches?

s 1
o Trained multiple models on each of 14 binary classification datasets

o XGBoost: Varied depth, number of trees, & learning rate
o (RandomForest and regression results are in the paper)

o Compressed each model using:
o Global refinement (GR): Recursively merges leaves with similar values
o Individual contributions (IC): Selects a subset of trees
o LRL1: Prunes only whole trees
o ForestPrune: Prune whole (sub)trees at a specific level
o LOP: Our approach



LOP yields higher compression ratios and is
equivalently performant as the XGBoost model
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Intrigued”? Come talk to us
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