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Tree ensembles are easy to configure, fast to learn, 

performant, and solve real problems
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Complex ensembles increase performance, but yield 

other problems

1. Hard to verify 

2. Not ideal for resource constrained devices
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Robust to evasion attacks?

Fair, e.g., causal discrimination?

Solution: Simplify the ensemble by pruning (sub)trees!



LOP: Level-wise Optimization and Pruning
[Devos et al. ICML’2025]

Given: Learned tree ensemble

Do: Compress the model s.t. lose < 0.5 percentage points of 

performance on validation data by removing
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LOP: Level-wise Optimization and Pruning
[Devos et al. ICML’2025]

Given: Learned tree ensemble

Do: Compress the model s.t. lose < 0.5 percentage points of 

performance on validation data by removing

1. Full trees
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LOP: Level-wise Optimization and Pruning
[Devos et al. ICML’2025]

Given: Learned tree ensemble

Do: Compress the model s.t. lose < 0.5 percentage points of 

performance on validation data by removing

1. Full trees

2. Subtrees
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Intuition of our approach

 If these leave values were nearly identical: Replace Y < 30 with a leaf 

 Problem: Doing so would decrease this tree’s performance

 Solution: Fine-tune leaves in other trees to compensate
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Our idea: Formulate global optimization problems to 

encourage such compression and compensation!



Q1: How does LOP compare to existing approaches?

 Trained multiple models on each of 14 binary classification datasets

 XGBoost:  Varied depth, number of trees, & learning rate

 (RandomForest and regression results are in the paper)

 Compressed each model using:

 Global refinement (GR): Recursively merges leaves with similar values 

 Individual contributions (IC): Selects a subset of trees 

 LRL1: Prunes only whole trees 

 ForestPrune: Prune whole (sub)trees at a specific level

 LOP: Our approach
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LOP yields higher compression ratios and is 

equivalently performant as the XGBoost model
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Intrigued? Come talk to us

 Funding:
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