Compressing Tree Ensembles through Level-wise Optimization and Pruning

Laurens Devos*, **Timo Martens***, Deniz Can Oruc, Wannes Meert, Hendrik Blockeel and Jesse Davis

Tree ensembles are easy to configure, fast to learn, performant, and solve real problems

2

Computer Science > Machine Learning

[Submitted on 18 Jul 2022]

Evaluation of Automated Hypnogram Analysis on Multi-Scored Polysomnographies

Why do tree-based models still outperform deep learning on tabular data?

Léo Grinsztajn (SODA), Edouard Oyallon (ISIR, CNRS), Gaël Varoquaux (SODA)

Complex ensembles increase performance, but yield other problems

Hard to verify

2. Not ideal for resource constrained devices

Solution: Simplify the ensemble by pruning (sub)trees!

LOP: Level-wise Optimization and Pruning [Devos et al. ICML'2025]

Given: Learned tree ensemble

Do: Compress the model s.t. lose < 0.5 percentage points of performance on validation data by removing

LOP: Level-wise Optimization and Pruning [Devos et al. ICML'2025]

Given: Learned tree ensemble

Do: Compress the model s.t. lose < 0.5 percentage points of performance on validation data by removing

1. Full trees

LOP: Level-wise Optimization and Pruning [Devos et al. ICML'2025]

Given: Learned tree ensemble

Do: Compress the model s.t. lose < 0.5 percentage points of performance on validation data by removing

- Full trees
- 2. Subtrees

Intuition of our approach

- □ If these leave values were nearly identical: Replace Y < 30 with a leaf
- Problem: Doing so would decrease this tree's performance
- Solution: Fine-tune leaves in other trees to compensate

Our idea: Formulate global optimization problems to encourage such compression and compensation!

Q1: How does LOP compare to existing approaches?

- Trained multiple models on each of 14 binary classification datasets
 - XGBoost: Varied depth, number of trees, & learning rate
 - (RandomForest and regression results are in the paper)
- Compressed each model using:
 - Global refinement (GR): Recursively merges leaves with similar values
 - Individual contributions (IC): Selects a subset of trees
 - LRL1: Prunes only whole trees
 - ForestPrune: Prune whole (sub)trees at a specific level
 - LOP: Our approach

LOP yields higher compression ratios and is equivalently performant as the XGBoost model

Intrigued? Come talk to us

Laurens

Funding:

