OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling #### Zhonglin Xie Beijing International Center for Mathematical Research Peking University Joint work with Hongliang Lu, Yaoyu Wu, Can Ren, Yuxuan Chen, Zaiwen Wen Accepted as a poster presentation at ICML 2025 June 28, 2025 - Introduction - Preliminaries and Overview - 3 Feedback-Driven PD Generation - 4 The Data Synthesis and Training Methodology - 5 Numerical Experiments # Background The challenge, and art, in using convex optimization is in recognizing and formulating the problem. Once this formulation is done, solving the problem is, like least-squares or linear programming, (almost) technology.¹ #### Description A company has three transportation options to choose from to transport 25 tons of cargo, namely trucks, airplanes, and ships with costs \$100, \$120, \$80 per ton and capacities of 10, 20, 30 tons respectively. The company can't choose trucks and ships together. How should the company optimize the selection and allocation of these methods to minimize overall costs? #### **Formulation** #### Variables: x_1,x_2,x_3 0-1variables indicating whether trucks, airplanes, and ships are are selected, respectively. y_1,y_2,y_3 Non-negative continuous variables indicating the volume of cargo. #### Objectives: $\begin{array}{l} \text{Minimize } 100y_1 + 120y_2 + 80y_3 \\ \textbf{Constraints:} \end{array}$ $\begin{array}{l} x_1 + x_2 + x_3 \geq 1 \\ y_1 \leq 10x_1, y_2 \leq 20x_2, y_3 \leq 30x_3 \end{array}$ $x_1 + x_3 \le 1$ $y_1 + y_2 + y_3 \ge 25$ $x_1, x_2, x_3 \in \{0, 1\}$ #### Python Code import gurobipy as gp from gurobipy import GRB model = gp.Model("Cargo_Transportation") # Define decision variables y1 = model.addVar(vtype=GRB.CONTINUOUS, name="Trucks_Tons", lb=0) model.setObjective(100*y1 + 120*y2 + 80*y3, GRB.MINIMIZE) # Constraints model.optimize() # Print the result if model.status == GRB.OPTIMAL: Boyd, Stephen. "Convex optimization." Cambridge UP (2004). # LLMs for Automated Optimization Modeling **Motivation:** Although solver technologies are quite advanced, the process of building optimization models still heavily relies on human expertise. The goal of automated modeling is to reduce this dependency, allowing more people without expertise in optimization to benefit from optimization techniques. #### **Related Works:** - NL4Opt Competition Initial exploration of using LLMs for assisted modeling. - **OptiMUS** Prompt engineering and agent-based approach. - **ORLM** Synthetic data and model fine-tuning approach. - **LLMOPT** Model fine-tuning and alignment approach. #### Main Challenges: - Prompt-based methods rely on LLMs' inherent modeling capability without enhancing it. - Learning-based methods lack large-scale, high-quality optimization problem datasets. # Data Synthesis - Fine-tuning relies heavily on training data and the selection of a base model. - The release of o1 has sparked significant interest in data synthesis. - Existing data synthesis methods fall into two categories ²: - Data Augmentation: Enhances existing samples through augmentations techniques. - Data Synthesis: Creates new samples from scratch or via GPT. **Challenges**: How to synthesize large-scale, high-quality data for Optimization Modeling? ²Wang, Ke, et al. "A survey on data synthesis and augmentation for large language models." arXiv preprint arXiv:2410.12896 (2024): 🔻 🗦 🕨 - Introduction - 2 Preliminaries and Overview - 3 Feedback-Driven PD Generation - 4 The Data Synthesis and Training Methodology - 5 Numerical Experiments # Standard Optimization Problem #### **Standard Form:** $$egin{array}{ll} \min_{\mathbf{x}} & g(\mathbf{x}), \ & ext{subject to} & c_i(\mathbf{x}) = 0, \quad i \in \mathcal{E}, \ & c_i(\mathbf{x}) \geq 0, \quad i \in \mathcal{I}. \end{array}$$ #### Where: - $\mathbf{x} \in \mathbb{R}^n$: Decision vector. - $g: \mathbb{R}^n \to \mathbb{R}$: Objective function. - $c_i: \mathbb{R}^n \to \mathbb{R}$: Constraint functions. - \bullet \mathcal{E}, \mathcal{I} : Index sets for equality and inequality constraints respectively. #### Main Challenges: - Modern solvers (e.g., Gurobi, Mosek) can efficiently solve optimization problems using algorithms like interior-point methods. - The primary challenge lies in transforming real-world problems into precise mathematical formulations. ### **Problem Formulation** The formulation for increasing the modeling capability of the LLM can be expressed as: $$\begin{aligned} & \max_{\theta} \quad \mathbb{E}_{(\text{NL}, \text{MF}, \text{PD}) \sim \mathcal{D}}[\textit{Q}_{(\text{NL}, \text{MF}, \text{PD})}(\text{MF}', \text{PD}')] \\ & \text{s.t.} \quad (\text{MF}', \text{PD}') = \mathcal{A}_{\theta}(\texttt{prompt}_{\text{M}}(\text{NL})) \end{aligned}$$ #### **Key Components:** - ullet $\mathcal{A}_{ heta}$: Large Language Model with parameters heta - Q: Quality metric for evaluation - ullet \mathcal{D} : Distribution of problem instances - \bullet $\mathtt{prompt}_{\mathrm{M}} :$ Modeling prompt template - NL: Natural Language Description - MF: Mathematical Formulation (abstract) - PD: Problem Data (concrete, solver-ready) # An Overview of our pipeline - Introduction - Preliminaries and Overview - Seedback-Driven PD Generation - 4 The Data Synthesis and Training Methodology - 5 Numerical Experiments ### Seed Problem Classes To build our training dataset, we started by curating 53 distinct optimization problem generators, enabling scalable generation of diverse problem instances. Here's a simplified example of our bin packing generator: ``` class BinPackingGenerator: def init (self, n items=(3.10), weight range=(1.50), bin_capacity=100, seed=None): self.params = locals() if seed: random.seed(seed) def generate_instance(self): n = random.randint(*self.params['n_items']) weights = {i: random.randint(*self.params['weight_range']) for i in range(n)} model = gp.Model("BinPacking") x = model.addVars(n, n, vtype=GRB.BINARY) v = model.addVars(n, vtvpe=GRB.BINARY) model.setObjective(v.sum(), GRB.MINIMIZE) model.addConstrs((sum(weights[i]*x[i,j] for i in range(n)) <= self.params['bin_capacity']*y[j] for j in range(n))) return model ``` 4 D > 4 A > 4 B > 4 B > # Problem Data Generation Algorithm - To ensure a balanced distribution of problem difficulty, we designed an algorithm as shown in Algorithm 1. - The core idea is to control problem difficulty using LLM and a complexity score function: $$\begin{split} S(\mathrm{PD}) &= \alpha_{\mathsf{bin}} \mathsf{N}_{\mathsf{bin}} + \alpha_{\mathsf{int}} \mathsf{N}_{\mathsf{int}} + \alpha_{\mathsf{cont}} \mathsf{N}_{\mathsf{cont}} \\ &+ \beta_{\mathsf{lin}} \mathsf{N}_{\mathsf{lin}} + \beta_{\mathsf{indic}} \mathsf{N}_{\mathsf{indic}} + \beta_{\mathsf{quad}} \mathsf{N}_{\mathsf{quad}} \\ &+ \beta_{\mathsf{gen}} \mathsf{N}_{\mathsf{gen}} + \gamma_{\mathsf{BigM}} \ f_{\mathsf{BigM}} + \delta_{\mathsf{expr}} \overline{L_{\mathsf{expr}}} \end{split}$$ #### Algorithm 1 Feedback-Driven Problem Data Generation **Require:** Target complexity range $[S_{\min}, S_{\max}]$, time limits $[T_{\min}, T_{\max}]$, instance generator G, feasibility threshold $\mathcal{F}_{\mathrm{target}}$, max iterations T Ensure: Configuration Θ such that for $\operatorname{PD}_i \sim G(\Theta)$: $S(\operatorname{PD}_i) \in [S_{\min}, S_{\max}]$ (complexity), $\tau_i \leq T_{\max}$ (solving time), $\operatorname{Pr}(f_i = \texttt{feasible}) > \mathcal{F}_{target}$ 1: Initialize parameters via LLM: $$\Theta_0 \leftarrow \mathcal{L}(\mathtt{prompt}_{\mathrm{IC}}(S_{\min}, S_{\max}, T_{\min}, T_{\max}))$$ - 2: for t = 1 to T do - 3: Generate N PDs: $\{PD_i\}_{i=1}^N \leftarrow G(\Theta_{t-1})$ - 4: Compute metrics: $S(PD_i)$ (Eq. 4), τ_i (solving time), f_i (feasibility) - 5: Aggregate statistics: $\bar{S}_t = \frac{1}{N} \sum S(\text{PD}_i), \ \bar{\tau}_t = \frac{1}{N} \sum \tau_i, \mathcal{F}_t = \frac{1}{N} \sum \mathbb{I}(f_i = \text{feasible})$ - 5: if $\overline{S}_t \in [S_{\min}, S_{\max}]$ and $\overline{\tau}_t \leq T_{\max}$ and $\mathcal{F}_t \geq \mathcal{F}_{\text{target}}$ then - : return Θ_{t-1} - 8: else - 9: Refine parameters via feedback: - $\Theta_t \leftarrow \mathcal{L}(\mathtt{prompt}_{\mathrm{RC}}(ar{S}_t, ar{ au}_t, \mathcal{F}_t; \Theta_{t-1}))$ - 10: end if - 11: end for - 12: **return** \emptyset (no valid Θ found) # Example: Measuring Problem Complexity ### **Production Planning Problem:** - Variables: - Binary: $y_1, y_2 \in \{0, 1\}$ (production decisions) - Integer: $x_1, x_2 \in \mathbb{Z}^+$ (production quantities) - Continuous: $z \ge 0$ (total cost) - **Objective:** min $z + 10y_1 + 8y_2$ #### **Constraint Types:** - **1** Linear: $2x_1 + 3x_2 \le 100$, $x_1 \le 50$, $x_2 \le 30$ - ② Indicator (Big-M): $x_1 \ge 5 100(1 y_1)$ - **3** Quadratic: $z \ge 0.5x_1^2 + 0.3x_2^2$ - Nonlinear: $x_1 e^{x_2} \le 100$ ### **Complexity Analysis:** - Variable counts: - 2 binary - 2 integer - 1 continuous - Constraint counts: - 3 linear - 2 indicator - 1 quadratic - 1 nonlinear - Big-M frequency: $f_{BigM} = 2$ - Avg expr length: $\overline{L_{\rm expr}} \approx 2.71$ - Score: S = 16.71 (unit weights) - Introduction - Preliminaries and Overview - 3 Feedback-Driven PD Generation - The Data Synthesis and Training Methodology - Mumerical Experiments # Bidirectional Data Synthesis Algorithm We design a three-phase backtranslation pipeline to generate high-quality problem descriptions: - Initial Generation: LLM generates initial NL description from mathematical formulation and problem data - Self-Criticism: I I M evaluates the description by examining mathematical equivalence, completeness, and clarity - **Self-Refinement:** Based on criticism. LLM generates refined descriptions focusing on accuracy and completeness ``` Algorithm 2 Bidirectional Data Synthesis Algorithm ``` **Require:** Instance pair $(MF_i, PD_{i,j})$, Max Iteration TEnsure: $(NL_{i,i}, MF'_{i,i}, PD'_{i,i}, OV_{i,i})$ - 1: Initial generation: $NL \leftarrow \mathcal{L}(prompt_{\tau}(MF_i, PD_{i,i}))$ 2: Initialize: SC = SR = Null - 3: **for** k = 1, ..., T-1 **do** - Self-Criticize: $SC \leftarrow \mathcal{L}(prompt_C(MF_i, PD_{i,i}, NL))$ - Self-Refine: $SR \leftarrow \mathcal{L}(prompt_{P}(MF_{i}, PD_{i,i}, NL, SC, SR))$ - if SR is good enough then - break - end if 9. end for - 10: $NL_{i,i} \leftarrow SR$ 11: AutoFormulation: - $(\mathrm{MF}'_{i,i},\mathrm{PD}'_{i,i}) \leftarrow \mathcal{A}_{\theta}(\mathrm{prompt}_{\mathrm{M}}(\mathrm{NL}_{i,i}))$ - 12: $OV_{i,i} \leftarrow Solve PD_{i,i}$ by Gurobi - 13: $OV'_{i,i} \leftarrow Solve PD'_{i,i}$ by Gurobi - 14: if $OV_{i,j} = OV'_{i,j}$ then - return $(NL_{i,i}, MF'_{i,i}, PD'_{i,i}, OV_{i,i})$ - 16. else - return Null - 18: end if ### An Example of Backtranslation - The backtranslation pipeline converts mathematical formulations (MF) and problem data (PD) into human-readable problem descriptions. - To ensure the correctness and consistency of generated descriptions with respect to MF and PD, we perform rejection sampling on the outputs. #### An Example of Backtranslation #### Input-General Formulation Minimize Subject to $\sum_{i \in S_j} x_i \geq k_j \quad orall j \in ext{Elemen}$ $x_i \in \{0,1\} \quad orall i \in ext{Sets}$ - ci represents the cost coefficient for each set - x_i is a binary decision variable indicating whether set i is selected - S_j represents the set of all sets containing element j - k_j represents the minimum number of times element j needs to be covered Input-LP File 80000 Selected[1] + 40000 Selected[2] + 20000 Selected[3] + 10000Selected[4] + 80000 Selected[5] + 90000 Selected[6] Subject To MultiCover_e1: Selected[1] + Selected[3] + Selected[5] + Selected[6] >= 4 $\begin{array}{l} MultiCover_e10: Selected[1] + Selected[4] + Selected[5] + \\ Selected[6] \\ >= 4 \end{array}$ Bounds Binaries Selected[1] Selected[2] Selected[3] Selected[4] Selected[5] Selected[6] #### **Backtranslation** Generator #### Output-Natural Language Description A city is planning the layout of emergency medical stations. There are 6 candidate locations for building medical stations, each with different construction costs: Location 1: Construction cost \$80,000; Location 2: Construction cost \$40,000 The city is divided into 10 districts, each requiring different numbers of medical stations for coverage due to population density and emergency medical needs: Districts 1 and 2: require coverage by at least 4 stations; District 3: requires coverage by at least 2 stations Each candidate location can cover specific districts: Location 1 covers districts: 1, 2, 6, 10; Location 2 covers districts: 3, 5, 6, 9 The objective is to decide which locations should be selected for building medical stations, minimizing the total construction cost while meeting the coverage requirements for each district. Each location can only be selected or not selected (binary decision). # Forward Modeling and Rejection Sampling #### Forward Modeling: - AutoFormulator transforms NL to MF and PD. - Uses Chain-of-Thought prompting strategies. - Generates diverse modeling reasoning paths. #### **Rejection Sampling Process:** - Compare solutions: $OV'_{i,j}$ (from generated) vs $OV_{i,j}$ (from original). - Accept if $OV_{i,j} = OV'_{i,j}$. - Manual validation shows 99.6% accuracy! #### CoT Prompt Example The following is an operations research problem. Let's solve it step by step: - Identify the decision variables, objective function, and constraints - Formulate the mathematical model - Implement the solution using Gurobi in Python - Verify and interpret the results # Training Strategy #### **Data Augmentation** - Multiple augmentation strategies including: - Problem rewriting - Semantic substitution - Constraint expansion - Dual sampling quality control # Augmentation Prompt Examples - 1. Rewrite the problem using different expressions and terminology while keeping the core optimization task identical. - 2. Generate a variant by adding/removing/modifying one constraint while maintaining problem feasibility. #### **Iterative Training Process** - Parameter-efficient fine-tuning with LoRA - Joint optimization objective: $$\mathcal{L}_{ ext{SFT}}(heta) = -\mathbb{E}_{(p,y) \sim \mathcal{D}_{ ext{SFT}}} \left[\sum_{t=1}^{|y|} \log P_{ heta}(y_t|y_{< t}, p) ight]$$ - Introduction - Preliminaries and Overview - 3 Feedback-Driven PD Generation - 4 The Data Synthesis and Training Methodology - 5 Numerical Experiments ### Problem Data Distribution Figure: Distribution of LP file lengths across generated instances by difficulty levels. Figure: Distribution of LP file lengths across generated instances by problem types. # Statistics of the OptMATH Dataset #### **Problem Length Analysis:** OptMATH presents significantly more complex problem descriptions compared to existing benchmarks. ### **Problem Type Coverage:** - OptMATH-Bench covers a wide range of optimization problems: - Linear Programming - Mixed Integer Linear Programming - Integer Programming - Nonlinear Programming - Second-Order Cone Programming # Statistics of the OptMATH Dataset OptMATH demonstrates comprehensive coverage across both problem space and application domains, with its embeddings surrounding existing benchmarks while spanning diverse industrial scenarios. # Performance Comparison of Models on Different Benchmarks Table 1. Performance Comparison of Models on Different Benchmarks | Types | Models | NL4OPT | MAMO
EasyLP | MAMO
ComplexLP | OptMATH
Bench | IndustryOR | OptiBench | Macro AVG | |-------------|------------------------------|--------|----------------|-------------------|------------------|------------|-----------|-----------| | Baseline | Llama3.1-8B | 0.0% | 0.2% | 0.0% | 0.0% | 0.0% | 0.0% | 0.1% | | | Qwen2.5-7B | 86.9% | 83.6% | 21.8% | 1.6% | 10.0% | 36.2% | 40.0% | | | GPT-3.5-turbo | 78.0% | 79.3% | 33.2% | 15.0% | 21.0% | 47.4% | 51.4% | | | GPT-4 | 89.0% | 87.3% | 49.3% | 16.6% | 33.3% | 68.6% | 57.4% | | | Deepseek-V3 | 95.9% | 88.3% | 51.1% | 32.6% | 37.0% | 71.6% | 62.8% | | | OptiMUS (GPT-4o-2024-05-13) | 78.8% | 77.0% | 43.6% | 20.2% | 31.0% | 45.8% | 49.4% | | | Qwen2.5-32B | 92.7% | 82.2% | 44.6% | 9.3% | 16.0% | 47.6% | 48.7% | | Fine-tuning | ORLM-Llama-3-8B (reported) | 85.7% | 82.3% | 37.4% | * | 38.0% | * | 60.9% | | | ORLM-Llama-3-8B (reproduced) | 84.5% | 74.9% | 34.1% | 2.6% | 24.0% | 51.1% | 45.2% | | | OptMATH-Llama3.1-8B (pass@1) | 55.5% | 73.9% | 40.8% | 24.4% | 18.0% | 55.5% | 44.7% | | | OptMATH-Qwen2.5-7B (pass@1) | 94.7% | 86.5% | 51.2% | 24.4% | 20.0% | 57.9% | 55.8% | | | OptMATH-Qwen2.5-32B (pass@1) | 95.9% | 89.9% | 54.1% | 34.7% | 31.0% | 66.1% | 62.0% | | Pass@8 | OptMATH-Llama3.1-8B | 97.6% | 94.2% | 71.6% | 51.6% | 37.0% | 66.6% | 69.8% | | | OptMATH-Qwen2.5-7B | 98.4% | 94.5% | 72.5% | 56.0% | 38.0% | 68.1% | 71.3% | | | OptMATH-Qwen2.5-32B | 97.9% | 93.9% | 75.4% | 67.4% | 47.0% | 76.8% | 76.4% | # Scaling Analysis on Model Size and Training Data Size OptMATH demonstrates consistent performance gains across model sizes (0.5B-32B) and training data scales, with larger models achieving better absolute performance while smaller models show higher sensitivity to data scaling. # Many Thanks For Your Attention! Homepage: zlxie.cn arXiv Link: https://arxiv.org/abs/2502.11102