One-dimensional Path Convolution Xuanshu Luo, Martin Werner Technical University of Munich TUM School of Engineering and Design Professorship of Big Geospatial Data Management ICML 2025 ### **Motivation** #### Compared to 2D convolution, 1D convolutional kernels fail to preserve the spatial continuity of adjacent pixels in both directions. scale linearly, providing better parameter efficiency; ### **Motivation** #### Compared to 2D convolution, 1D convolutional kernels - fail to preserve the spatial continuity of adjacent pixels in both directions. - scale linearly, providing better parameter efficiency; How to construct a vision model that exclusively utilizes 1D convolution to achieve superior parameter efficiency while simultaneously preserving the locality of images to match the capabilities of conventional 2D CNNs? ### **Motivation** #### Compared to 2D convolution, 1D convolutional kernels - fail to preserve the spatial continuity of adjacent pixels in both directions. - scale linearly, providing better parameter efficiency; How to flatten a 2D image? How to construct a vision model that exclusively utilizes 1D convolution to achieve superior parameter efficiency while simultaneously preserving the locality of images to match the capabilities of conventional 2D CNNs? ## Hilbert and Z-order paths - space-filling - topologically self-organizing - recursively defined provide scale-invariant 1D-to-2D mappings with spatial proximity preservation capability^{1,2} image compression³ database⁴ parallel computing⁵ point cloud processing⁶ • • • - [1] Jagadish, H. V. Linear clustering of objects with multiple attributes. In Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data - [2] Dai, H. and Su, H.-C. On the locality properties of space-filling curves. In International Symposium on Algorithms and Computation. Springer, 2003. - [3] Wang, H., Gupta, K., Davis, L., and Shrivastava, A. Neural space-filling curves. In European Conference on Computer Vision. Springer, 2022 - [4] Kamel, I. and Faloutsos, C. Hilbert r-tree: An improved rtree using fractals. In VLDB, volume 94, pp. 500-509. Citeseer, 1994 - [5] Böhm, C., Perdacher, M., and Plant, C. A novel Hilbert curve for cache-locality preserving loops. IEEE Transactions on Big Data, 7(2):241-254, 2018. - [6] Wu, X., et al. Point transformer v3: Simpler faster stronger. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024 ### Hilbert and Z-order paths provide scale-invariant **1D-to-2D** mappings with spatial proximity preservation capability^{1,2}, but we are considering **2D-to-1D** mappings... Pixels with shorter cumulative distances to all their 8 neighbors than (a) are in apricot, otherwise purple. ^[1] Jagadish, H. V. Linear clustering of objects with multiple attributes. In Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data [2] Dai, H. and Su, H.-C. On the locality properties of space-filling curves. In International Symposium on Algorithms and Computation. Springer, 2003. ## Hilbert and Z-order paths *Table 1.* Locality measurements of the raster scan, Hilbert, and Z-order paths for multiple resolutions. | Path | Resolution | Total Distance | P_{sd} | |-----------------------------------|------------------|--|-----------------------| | raster scan
Hilbert
Z-order | 32×32 | 1.88×10^{5}
2.15×10^{5}
1.80×10^{5} | -
79.10%
74.61% | | raster scan
Hilbert
Z-order | 64×64 | 1.54×10^{6}
1.80×10^{6}
1.49×10^{6} | 80.96%
81.35% | | raster scan
Hilbert
Z-order | 128×128 | 1.24×10^{7}
1.48×10^{7}
1.22×10^{7} | 86.51%
84.50% | | raster scan
Hilbert
Z-order | 256×256 | 1.00×10^8
1.20×10^8
0.99×10^8 | -
89.04%
89.17% | P_{sd} = proportion of pixels with shorter distances to their neighbors at the same positions than raster scan paths. Directly applying Hilbert/Z-order paths yields suboptimal spatial locality preservation. ## **Path Shifting** The path shifting approach effectively relocates purple pixels. Combining multiple shifted paths can meet the locality constraint (P_{sd} =100%). ## The minimal set of paths To find the minimal set of paths satisfying the locality constraint is polynomial-time reducible to the NP set cover problem¹ (Appendix C provides proof). Using *randomized rounding algorithm*², we find that **three** shifted paths are sufficient to meet the locality constraint for multiple resolutions. ^[1] Vazirani, V. V. Set Cover, pp. 15–26. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. ^[2] Bertsimas, D. and Vohra, R. Rounding algorithms for covering problems. Mathematical Programming, 1998. ### **Path Convolution Model** - The CUDA-optimized path traversal layer provides up to 73-fold acceleration compared to a single-thread CPU implementation. - We introduce **path-aware channel attention** (PACA) to capture both path-specific and cross-path dependencies. ## **Experiments** #### Datasets: CIFAR-10¹, SVHN², ImageNet-64³ #### Models: PathConvS/B ResNet18/50⁴ (comparable FLOPs) PathConv models achieve ResNet-level accuracy using only 1/3 parameters. ^[1] Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny images. 2009. ^[2] Netzer, Y., et al. Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning and unsupervised feature learning, Granada, 2011. ^[3] Chrabaszcz, P., Loshchilov, I., and Hutter, F. A downsampled variant of imagenet as an alternative to the cifar datasets. ^[4] He, K., et al. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. # Thank you! For more details, please refer to our paper. Code at GitHub More research in our group