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Compared to 2D convolution, 1D convolutional kernels

fail to preserve the spatial continuity of adjacent pixels in both directions. 

scale linearly, providing better parameter efficiency;
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How to construct a vision model that exclusively utilizes 1D convolution to 

achieve superior parameter efficiency while simultaneously preserving the 

locality of images to match the capabilities of conventional 2D CNNs? 
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Compared to 2D convolution, 1D convolutional kernels

fail to preserve the spatial continuity of adjacent pixels in both directions. 

scale linearly, providing better parameter efficiency;

How to construct a vision model that exclusively utilizes 1D convolution to 

achieve superior parameter efficiency while simultaneously preserving the 

locality of images to match the capabilities of conventional 2D CNNs? 

How to flatten a 2D image? 



Hilbert and Z-order paths 
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• space-filling
• topologically self-organizing
• recursively defined

provide scale-invariant 1D-to-2D mappings 
with spatial proximity preservation capability1,2

image compression3

database4

parallel computing5

point cloud processing6

…

[1] Jagadish, H. V. Linear clustering of objects with multiple attributes. In Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data 
[2] Dai, H. and Su, H.-C. On the locality properties of space-filling curves. In International Symposium on Algorithms and Computation. Springer, 2003.
[3] Wang, H., Gupta, K., Davis, L., and Shrivastava, A. Neural space-filling curves. In European Conference on Computer Vision. Springer, 2022
[4] Kamel, I. and Faloutsos, C. Hilbert r-tree: An improved rtree using fractals. In VLDB, volume 94, pp. 500–509. Citeseer, 1994
[5] Böhm, C., Perdacher, M., and Plant, C. A novel Hilbert curve for cache-locality preserving loops. IEEE Transactions on Big Data, 7(2):241–254, 2018.
[6] Wu, X., et al. Point transformer v3: Simpler faster stronger. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024
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provide scale-invariant 1D-to-2D mappings with spatial proximity preservation capability1,2,

but we are considering 2D-to-1D mappings…

[1] Jagadish, H. V. Linear clustering of objects with multiple attributes. In Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data 
[2] Dai, H. and Su, H.-C. On the locality properties of space-filling curves. In International Symposium on Algorithms and Computation. Springer, 2003.

Pixels with shorter cumulative distances to all their 8 neighbors than (a) are in apricot, otherwise purple.



Hilbert and Z-order paths 
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Psd = proportion of pixels with shorter distances to their neighbors
xssxxat the same positions than raster scan paths.

Directly applying Hilbert/Z-order paths yields 
suboptimal spatial locality preservation.



Path Shifting
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The path shifting approach effectively relocates purple pixels.
Combining multiple shifted paths can meet the locality constraint (Psd =100%). 



The minimal set of paths
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To find the minimal set of paths satisfying the locality constraint is polynomial-time 
reducible to the NP set cover problem1 (Appendix C provides proof).

Using randomized rounding algorithm2, we find that three shifted paths are 
sufficient to meet the locality constraint for multiple resolutions.

[1] Vazirani, V. V. Set Cover, pp. 15–26. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.
[2] Bertsimas, D. and Vohra, R. Rounding algorithms for covering problems. Mathematical Programming, 1998.



Path Convolution Model
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• The CUDA-optimized path traversal layer provides up to 73-fold acceleration compared to a 
single-thread CPU implementation.

• We introduce path-aware channel attention (PACA) to capture both path-specific and 
cross-path dependencies.



Experiments
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Datasets:

CIFAR-101, SVHN2, ImageNet-643

Models:

PathConvS/B

ResNet18/504 (comparable FLOPs)

[1] Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny images. 2009. 
[2] Netzer, Y., et al. Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning and unsupervised feature learning, Granada, 2011.
[3] Chrabaszcz, P., Loshchilov, I., and Hutter, F. A downsampled variant of imagenet as an alternative to the cifar datasets.
[4] He, K., et al. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

PathConv models achieve ResNet-level 
accuracy using only 1/3 parameters.
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For more details, please refer to our paper.

Code at GitHub More research in our group
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