Northwestern University

Ab Initio Nonparametric Variable Selection for Scalable Symbolic Regression with Large p

Shengbin Ye 1,2 Meng Li 1

¹Department Statistics, Rice University ²Department of Statistics and Data Science, Northwestern University

Motivation

SR Algorithm		p	Has Irrelevant X
Transformer			
TPSR	(2023)	9	
RNN			
DySymNet	(2024)	9	
uDSR	(2022)	9	
DSR	(2021)	2	
Divide-and-cond	quer		
AlFeynman 2.0 (2020)		9	
Genetic Program	nming		
PySR	(2023)	6	
Operon	(2020)	5	
:		:	:

- Symbolic regression (SR) is NP-hard
- Most focus on **low-dimensional** problems (e.g., $p \le 10$)
- Unrealistic settings: lack of irrelevant predictors
- No existing high-dimensional SR benchmark

PAN+SR: pre-screening framework for high-dimensional SR

Output y often depends on a subset $S_0 \subseteq \{1, \ldots, p\}$ of p_0 relevant predictors:

$$y = f(\boldsymbol{X}) = f(\boldsymbol{X}_{\mathcal{S}_0}),$$

where $p_0 = |\mathcal{S}_0| \ll p$.

Building on the Parametrics Assisted by Nonparametrics (PAN) framework in Ye et al. (JASA, 2024), we propose the PAN+SR framework.

Main Idea

- 1. Nonparametric variable selection: $X \mapsto X_{\mathcal{S}}$
 - large $p \implies$ small p
 - SR search space ↓↓↓
- 2. Perform SR on low-dimensional dataset (y, X_s)

PAN Criterion

Step 1 must select all S_0 :

 $S \supseteq S_0$

BART VIP Rank

We propose a novel Bayesian Additive Regression Tree (BART)-based variable selection method: BART VIP Rank

Figure 1. Visualization of BART.

Variable Inclusion Proportion (VIP)

A typical variable importance measure in BART is variable inclusion proportion (VIP):

$$q_j = \frac{1}{K} \sum_{l=1}^{K} \frac{c_{jk}}{c_{\cdot k}} \qquad \text{(avg prop of splits on } x_j)$$

- Arbitrary scale: how large is large?
- Tight range: $0 \le q_i \le 1$
- Small perturbation in threshold ⇒ different selections

(sensitivity)

VIP Rank

Fit L=20 independent BART models. Let $q_{j,\ell}={\sf VIP}$ of x_j in the ℓ th fit, and let $R(q_{j,\ell})={\sf ranking}$ of $q_{j,\ell}$ within fit ℓ . Define the ${\sf VIP}$ Rank for x_j as the average ranking over L model fits:

$$\overline{R}_j = \frac{1}{L} \sum_{\ell=1}^L R(q_{j,\ell}).$$

Under mild assumptions,

$$\overline{R}_j = \begin{cases} (1+p_0)/2, & \text{if } x_j \text{ is relevan} \\ (p_0+1+p)/2, & \text{otherwise} \end{cases}$$

Say $p_0=4$ and p=204. Then, $\overline{R}_j=2.5$ if x_j is relevant vs. $\overline{R}_j=104.5$ otherwise.

Algorithm

- 1. Fit L=20 independent BART models on (y, \boldsymbol{X})
- 2. Calculate BART VIP Rank $\overline{\boldsymbol{R}} = (\overline{R}_1, \dots, \overline{R}_p) \in \mathbb{R}^p$
- 3. Apply Agglomerative Hierarchical Clustering on $\overline{m{R}}$
- 4. Cut dendrogram to form 2 clusters: \mathcal{C}_{low} and \mathcal{C}_{high}
- 5. Select x_i if $\overline{R}_i \in \mathcal{C}_{low}$

High-Dimensional SR Benchmark

We design a high-dimensional SR benchmark using 22 real-world datasets from PMLB and 100 synthetic datasets based on *Feynman Lectures on Physics*.

Figure 2. True positive rates on high-dimensional Feynman datasets.

Figure 3. Performance of PAN+SR vs standalone SR on high-dimensional Feynman datasets.