# Northwestern University

# Ab Initio Nonparametric Variable Selection for Scalable Symbolic Regression with Large p



Shengbin Ye 1,2 Meng Li 1

<sup>1</sup>Department Statistics, Rice University <sup>2</sup>Department of Statistics and Data Science, Northwestern University

#### **Motivation**

| SR Algorithm         |        | p | Has Irrelevant $X$ |
|----------------------|--------|---|--------------------|
| Transformer          |        |   |                    |
| TPSR                 | (2023) | 9 |                    |
| RNN                  |        |   |                    |
| DySymNet             | (2024) | 9 |                    |
| uDSR                 | (2022) | 9 |                    |
| DSR                  | (2021) | 2 |                    |
| Divide-and-cond      | quer   |   |                    |
| AlFeynman 2.0 (2020) |        | 9 |                    |
| Genetic Program      | nming  |   |                    |
| PySR                 | (2023) | 6 |                    |
| Operon               | (2020) | 5 |                    |
| :                    |        | : | <b>:</b>           |

- Symbolic regression (SR) is NP-hard
- Most focus on **low-dimensional** problems (e.g.,  $p \le 10$ )
- Unrealistic settings: lack of irrelevant predictors
- No existing high-dimensional SR benchmark

# PAN+SR: pre-screening framework for high-dimensional SR

Output y often depends on a subset  $S_0 \subseteq \{1, \ldots, p\}$  of  $p_0$  relevant predictors:

$$y = f(\boldsymbol{X}) = f(\boldsymbol{X}_{\mathcal{S}_0}),$$

where  $p_0 = |\mathcal{S}_0| \ll p$ .

Building on the Parametrics Assisted by Nonparametrics (PAN) framework in Ye et al. (JASA, 2024), we propose the PAN+SR framework.

## **Main Idea**

- 1. Nonparametric variable selection:  $X \mapsto X_{\mathcal{S}}$ 
  - large  $p \implies$  small p
  - SR search space ↓↓↓
- 2. Perform SR on low-dimensional dataset  $(y, X_s)$

### **PAN Criterion**

Step 1 must select all  $S_0$ :

 $S \supseteq S_0$ 

#### **BART VIP Rank**

We propose a novel Bayesian Additive Regression Tree (BART)-based variable selection method: BART VIP Rank

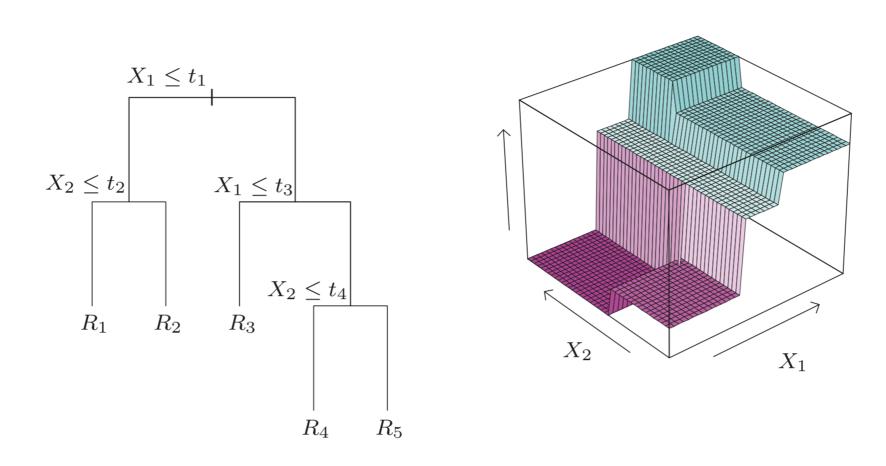


Figure 1. Visualization of BART.

# Variable Inclusion Proportion (VIP)

A typical variable importance measure in BART is variable inclusion proportion (VIP):

$$q_j = \frac{1}{K} \sum_{l=1}^{K} \frac{c_{jk}}{c_{\cdot k}} \qquad \text{(avg prop of splits on } x_j)$$

- Arbitrary scale: how large is large?
- Tight range:  $0 \le q_i \le 1$
- Small perturbation in threshold ⇒ different selections

#### (sensitivity)

#### **VIP Rank**

Fit L=20 independent BART models. Let  $q_{j,\ell}={\sf VIP}$  of  $x_j$  in the  $\ell$ th fit, and let  $R(q_{j,\ell})={\sf ranking}$  of  $q_{j,\ell}$  within fit  $\ell$ . Define the  ${\sf VIP}$  Rank for  $x_j$  as the average ranking over L model fits:

$$\overline{R}_j = \frac{1}{L} \sum_{\ell=1}^L R(q_{j,\ell}).$$

Under mild assumptions,

$$\overline{R}_j = \begin{cases} (1+p_0)/2, & \text{if } x_j \text{ is relevan} \\ (p_0+1+p)/2, & \text{otherwise} \end{cases}$$

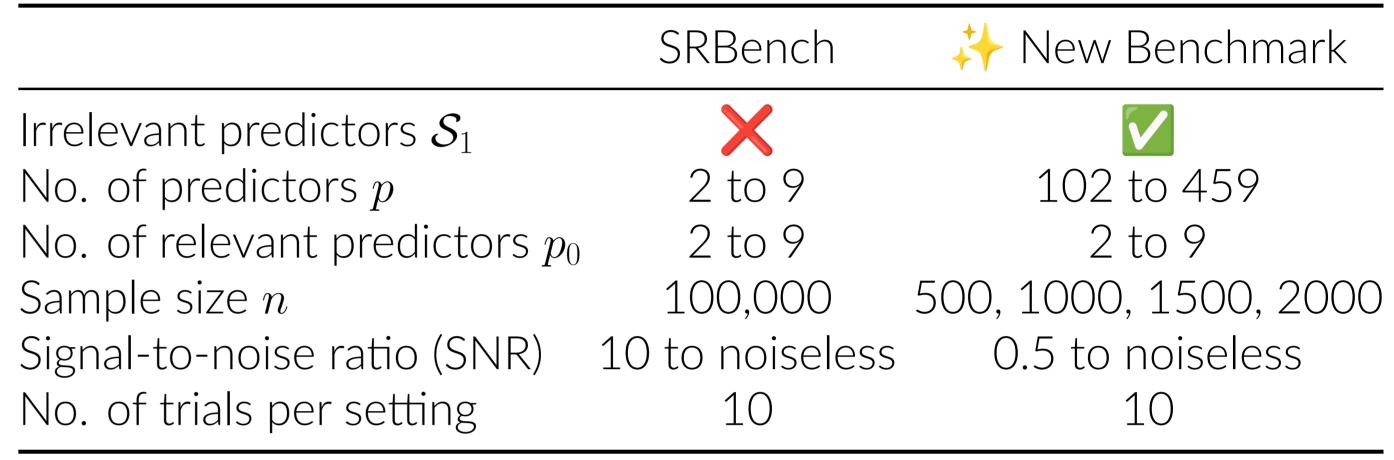
Say  $p_0=4$  and p=204. Then,  $\overline{R}_j=2.5$  if  $x_j$  is relevant vs.  $\overline{R}_j=104.5$  otherwise.

# Algorithm

- 1. Fit L=20 independent BART models on  $(y, \boldsymbol{X})$
- 2. Calculate BART VIP Rank  $\overline{\boldsymbol{R}} = (\overline{R}_1, \dots, \overline{R}_p) \in \mathbb{R}^p$
- 3. Apply Agglomerative Hierarchical Clustering on  $\overline{m{R}}$
- 4. Cut dendrogram to form 2 clusters:  $\mathcal{C}_{low}$  and  $\mathcal{C}_{high}$
- 5. Select  $x_i$  if  $\overline{R}_i \in \mathcal{C}_{low}$

# **High-Dimensional SR Benchmark**

We design a high-dimensional SR benchmark using 22 real-world datasets from PMLB and 100 synthetic datasets based on *Feynman Lectures on Physics*.



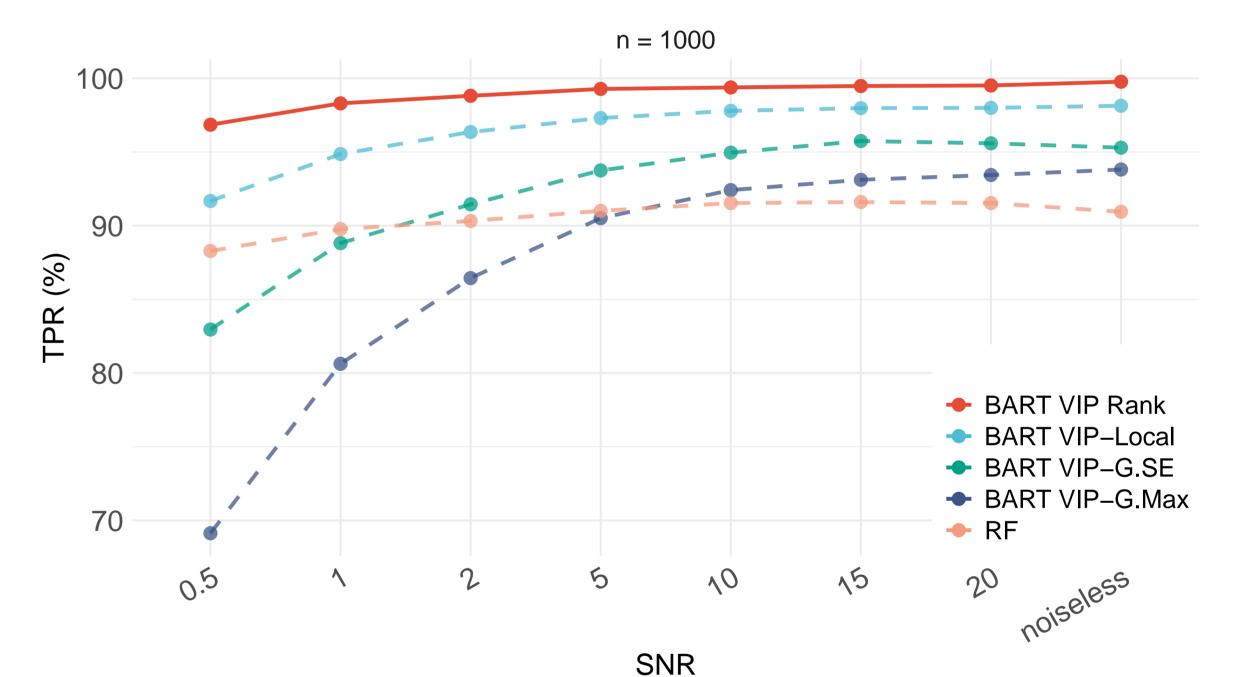


Figure 2. True positive rates on high-dimensional Feynman datasets.

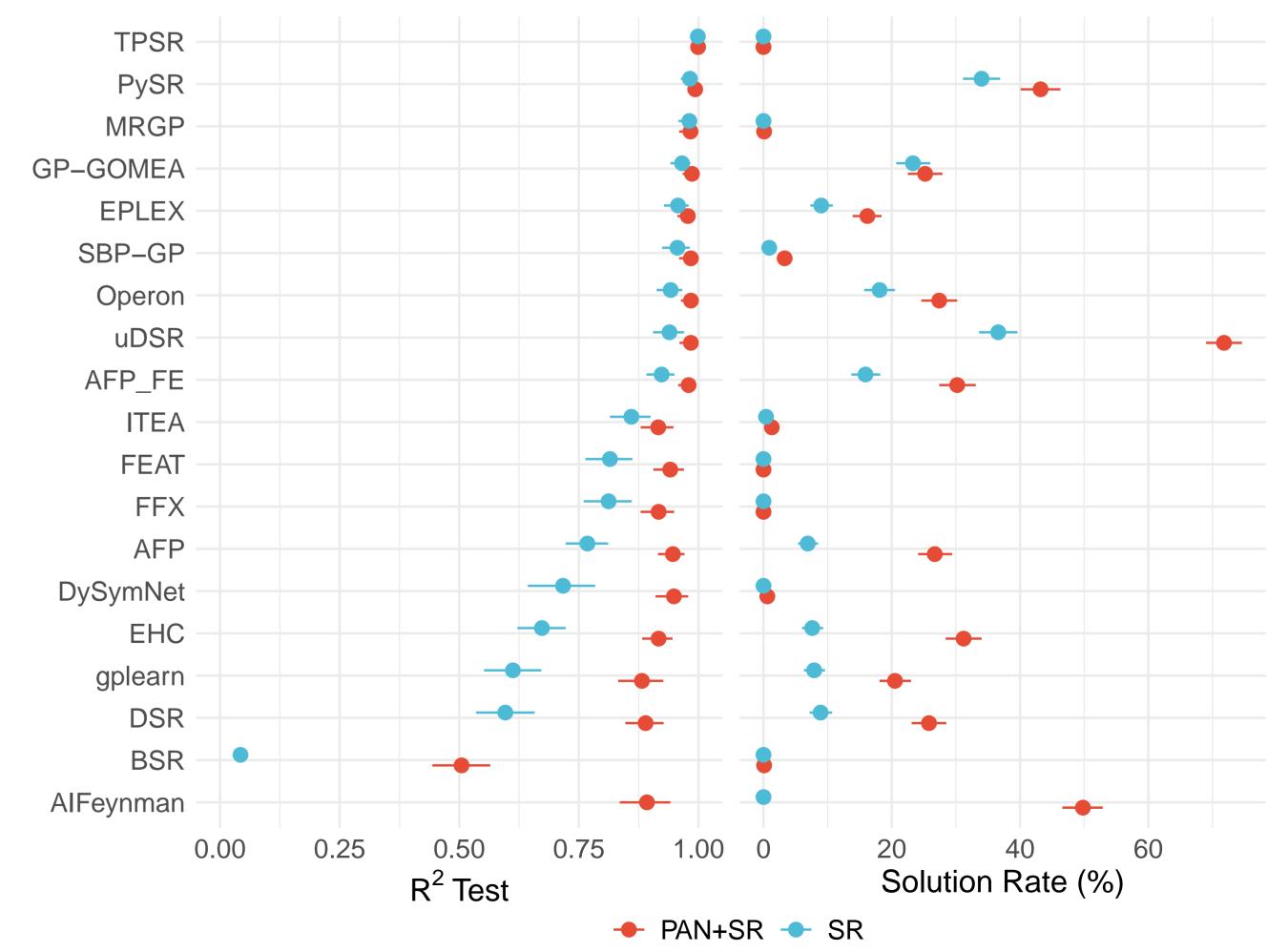


Figure 3. Performance of PAN+SR vs standalone SR on high-dimensional Feynman datasets.