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Dataset Pruning

• Dataset pruning aims to alleviate storage and training costs by identifying the 
most informative data points while removing redundant examples.


• However, many existing pruning methods require a complete training of a model 
with a full dataset.


• This ironically makes the pruning process more expensive than just training.



Key Observations

• : Prediction probability of  given , for the model trained with  epochs.


• Y-axis:  .


• X-axis:   .
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The evolution of the data points starts at the bottom left,  
moves to the right, and ends at the top left as training proceeds

Key Observations



Key Observations

• Dyn-Unc (He et al., 2024) samples the rightmost part of the “moon plot” by leveraging 
the standard deviation of the target probability.


• We should target bottom-right region to prune the “most uncertain” data points at 
earlier epochs.
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Difficulty and Uncertainty-Aware Lightweight Score

• Here,  is the average prediction over the window .


• : the example difficulty.


• : the standard deviation of the prediction probability, estimating the prediction uncertainty ( Dyn-Unc).

ℙ̄k :=
∑J−1

j=0 ℙk+j(y |x)

J [k, k + J − 1]

(a)
(b) ≈


DUALk(x, y) = (1 − ℙ̄k)

(a)

∑J−1
j=0 [ℙk+j(y ∣ x) − ℙ̄k]2

J − 1

(b)

DUAL(x, y) =
∑T−J+1

k=1 DUALk(x, y)

T − J + 1

By leveraging example difficulty (y-axis) and prediction uncertainty (x-axis) together, 
we can target bottom-right region.



Theoretical Analysis

• Consider a linearly separable binary classification task , where 
 with .  


• Without loss of generality, we assume .


• We use a linear classifier,   with a sigmoid activation.


• If only one data point is retained, it should be the one nearest to the decision boundary, .

{(xi ∈ ℝn, yi ∈ {±1})}N
i=1

N = 2 ∥x1∥ < ⟨x1, x2⟩ < ∥x2∥
y1 = y2 = + 1

f(x; w) = w⊤x
x1
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Theoretical Analysis
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Decision Boundary  
After Pruning

Decision Boundary  
After Pruning =

≠

Dyn-Unc: After  timestep


DUAL: After  timestep

Tv

Tvm
where Tvm < Tv}



Theoretical Analysis

Theorem 3.1 (Informal). Define  Let  be the standard deviation and  

be the mean of  within a window from time  to . Denote  and  as the 
first time when  and  occurs, respectively. If the learning 

rate is small enough, then . 

σ(z) := (1 + e−z)−1 . S(i)
t;J μ(i)

t;J

σ( f(xi; wt)) t t + J − 1 Tv Tvm
S(1)

t;J > S(2)
t;J S(1)

t;J (1 − μ(i)
t;J) > S(2)

t;J (1 − μ(2)
t;J )

Tvm < Tv



Beta Sampling

βr = 15(1 − μD) ⋅ (1 − rcD),
αr = 15 − βr .

•  : pruning ratio


•  : prediction mean of the highest score sample

•  : hyperparameter that determines the nonlinearity

r
μD
cD

Beta function move progressively with , starting 
from  ( , small pruning ratio) to one.

r
μD r ≃ 0

Key Intuition: 
The higher the pruning ratio gets,  

the more easy samples are needed.

We design the Beta PDF function to assign a sampling probability concerning a prediction mean as follows:



Beta Sampling



Experimental Results
{
{

Pruning ratio 30% 50% 70% 80% 90%

Random 72.2 70.3 66.7 62.5 52.3

CCS 72.3 70.5 67.8 64.5 57.3

D2 72.9 71.8 68.1 65.9 55.6

DUAL 72.8 71.5 68.6 64.7 53.1

DUAL+Beta 73.3 72.3 69.4 66.5 60.0

ImageNet-1K

T = 60

T = 90



Experimental Results
CIFAR-100 Under Label Noise 20%

CIFAR-100 Under Image Corruption 20%
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