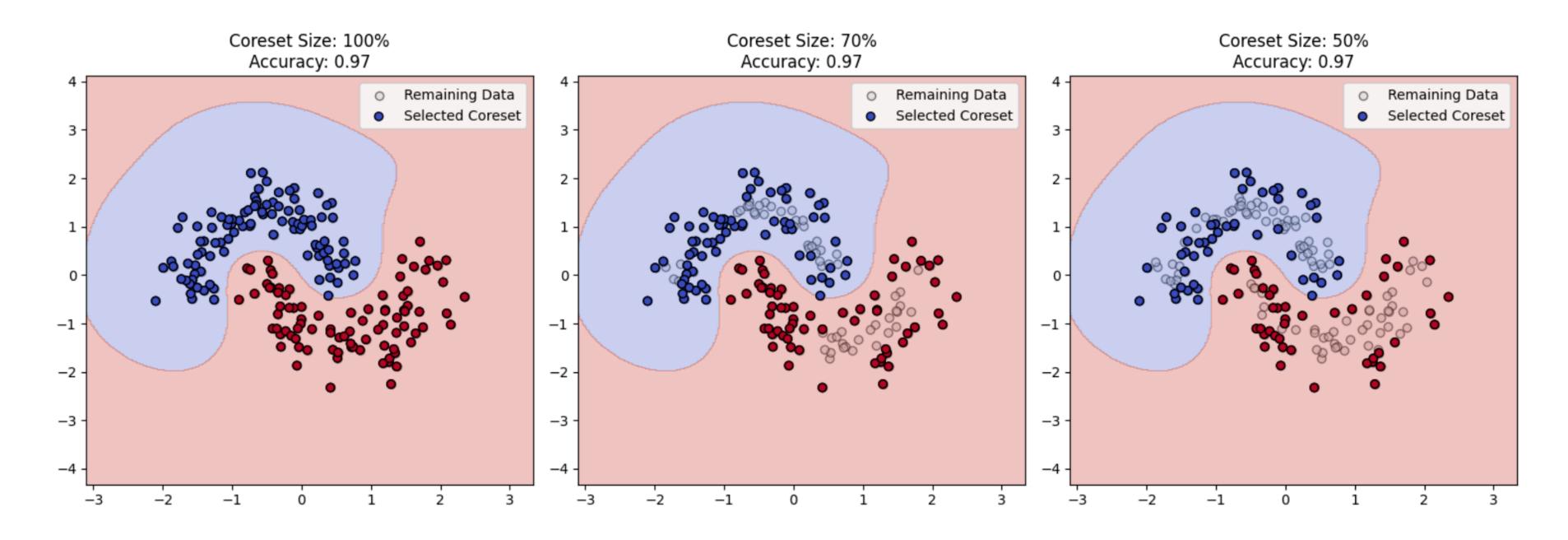
Lightweight Dataset Pruning via Example Difficulty and Prediction Uncertainty

Yeseul Cho*, Baekrok Shin*, Changmin Kang, Chulhee Yun

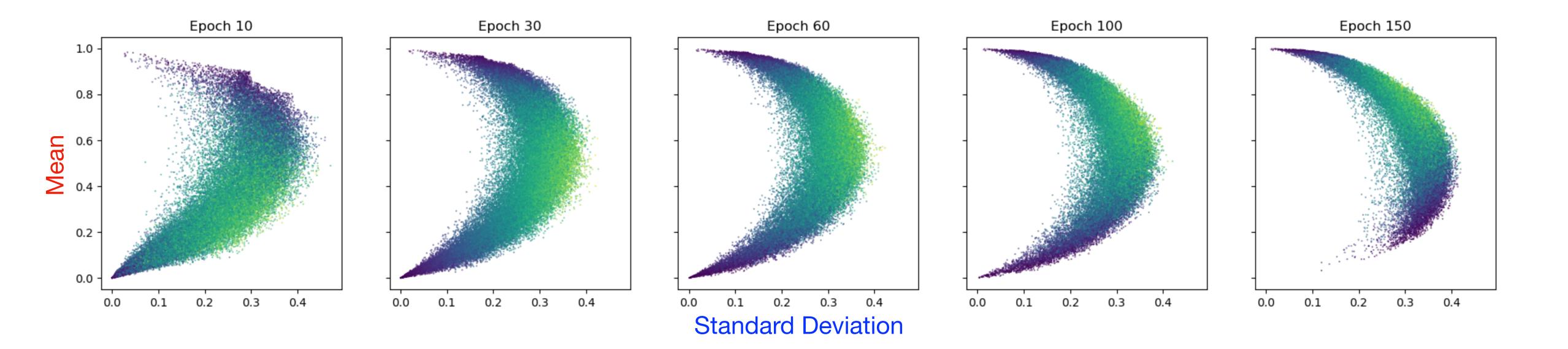
KAIST AI

Dataset Pruning



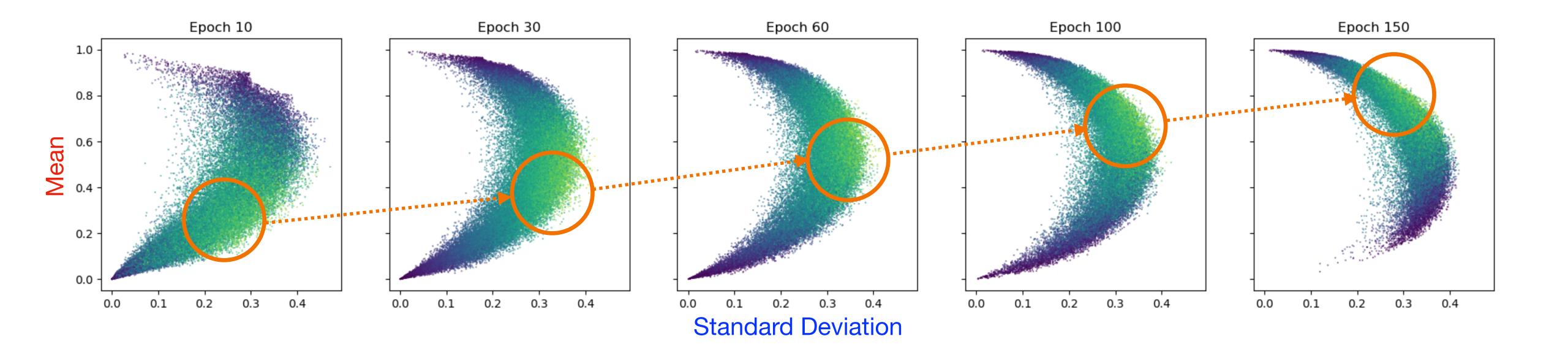
- Dataset pruning aims to alleviate storage and training costs by identifying the most informative data points while removing redundant examples.
- However, many existing pruning methods require a complete training of a model with a full dataset.
- This ironically makes the pruning process more expensive than just training.

Key Observations



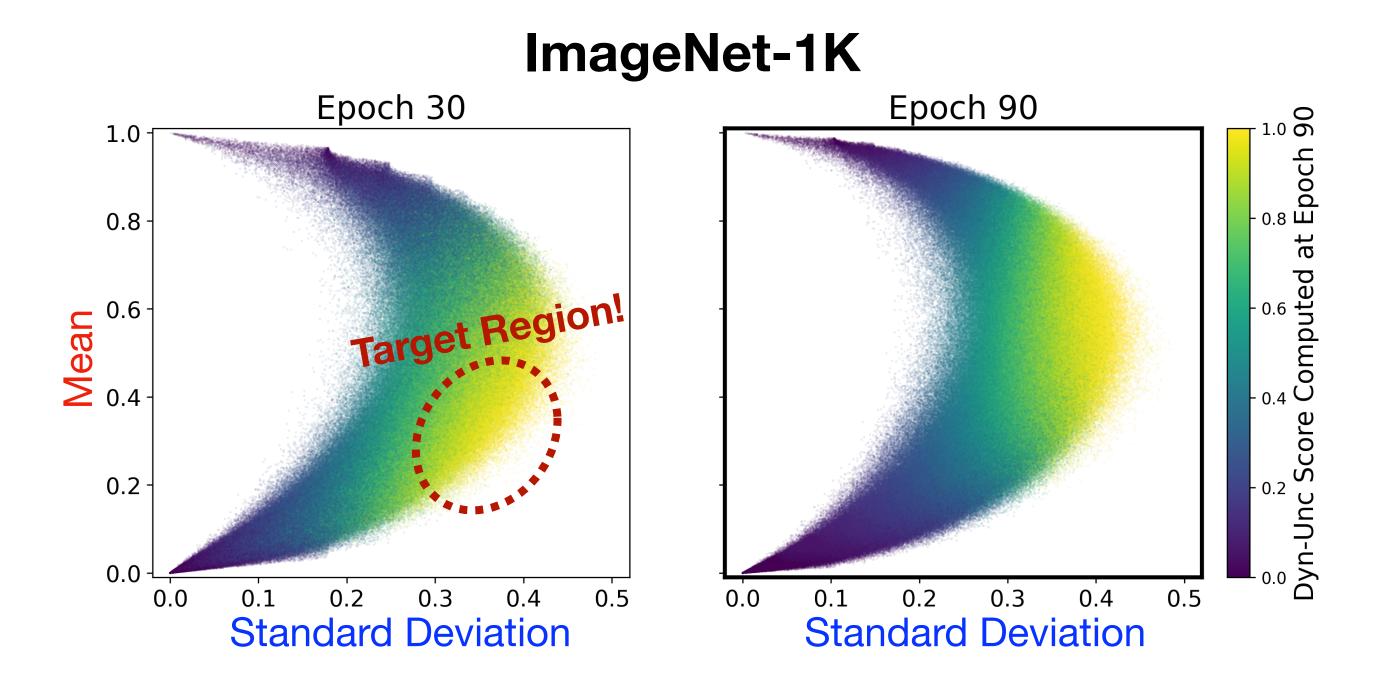
- $\mathbb{P}_k(y \mid \mathbf{x})$: Prediction probability of y given \mathbf{x} , for the model trained with k epochs.
- Y-axis: $\bar{\mathbb{P}}(y \mid \mathbf{x}) := \frac{\sum_{k=1}^{T} \mathbb{P}_k(y \mid \mathbf{x})}{T}$.
- X-axis: $\sqrt{\frac{\sum_{k=1}^{T} \left[\mathbb{P}_{k}(y \mid \mathbf{x}) \bar{\mathbb{P}}(y \mid \mathbf{x})\right]^{2}}{T-1}}.$

Key Observations



The evolution of the data points starts at the bottom left, moves to the right, and ends at the top left as training proceeds

Key Observations



- Dyn-Unc (He et al., 2024) samples the rightmost part of the "moon plot" by leveraging the standard deviation of the target probability.
- We should target bottom-right region to prune the "most uncertain" data points at earlier epochs.

Difficulty and Uncertainty-Aware Lightweight Score

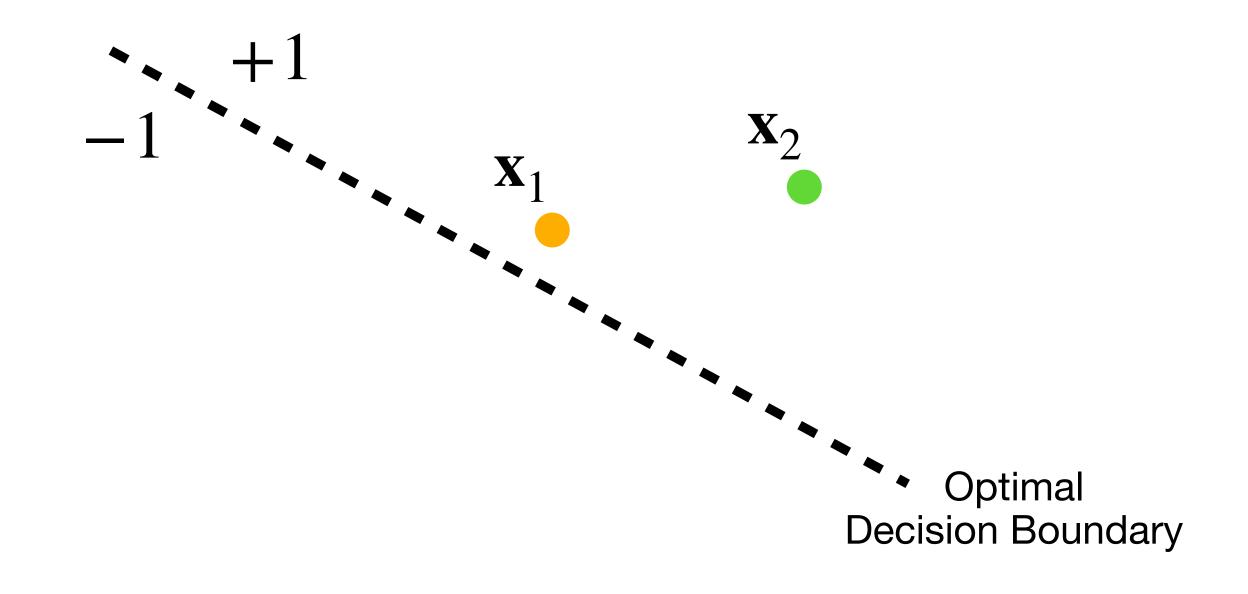
By leveraging example difficulty (y-axis) and prediction uncertainty (x-axis) together, we can target bottom-right region.

$$DUAL_{k}(\mathbf{x}, y) = \underbrace{(1 - \bar{\mathbb{P}}_{k})}_{(a)} \underbrace{\sqrt{\frac{\sum_{j=0}^{J-1} \left[\mathbb{P}_{k+j}(y \mid \mathbf{x}) - \bar{\mathbb{P}}_{k}\right]^{2}}{J - 1}}_{(b)}$$

$$DUAL(\mathbf{x}, y) = \frac{\sum_{k=1}^{T-J+1} DUAL_{k}(\mathbf{x}, y)}{T - J + 1}$$

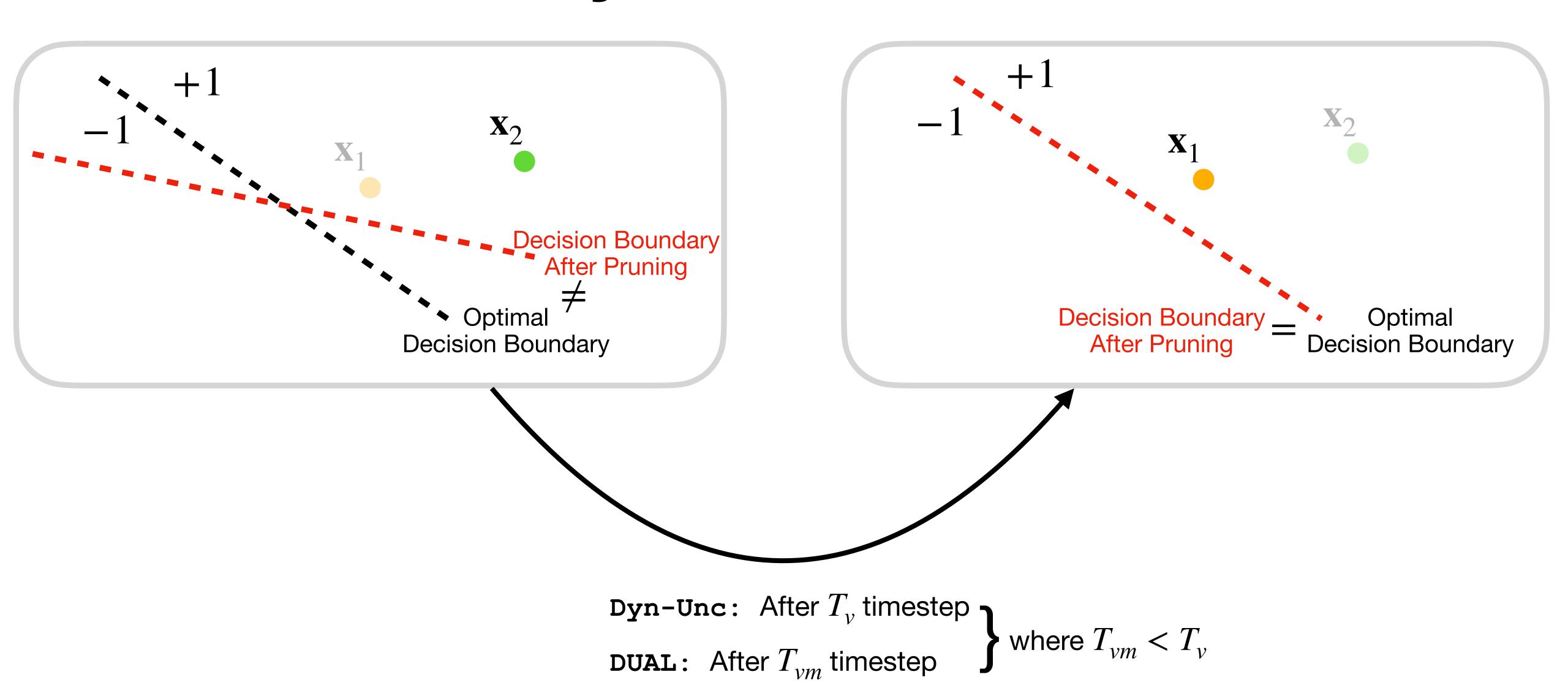
- Here, $\bar{\mathbb{P}}_k := \frac{\sum_{j=0}^{J-1} \mathbb{P}_{k+j}(y \mid \mathbf{x})}{J}$ is the average prediction over the window [k, k+J-1].
- (a): the example difficulty.
- (b): the standard deviation of the prediction probability, estimating the prediction uncertainty (\approx Dyn-Unc).

Theoretical Analysis



- Consider a linearly separable binary classification task $\{(\mathbf{x}_i \in \mathbb{R}^n, y_i \in \{\pm 1\})\}_{i=1}^N$, where N=2 with $\|\mathbf{x}_1\| < \langle \mathbf{x}_1, \mathbf{x}_2 \rangle < \|\mathbf{x}_2\|$.
- Without loss of generality, we assume $y_1 = y_2 = +1$.
- We use a linear classifier, $f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{x}$ with a sigmoid activation.
- If only one data point is retained, it should be the one nearest to the decision boundary, \mathbf{x}_1 .

Theoretical Analysis



Theoretical Analysis

Theorem 3.1 (Informal). Define $\sigma(z) := (1 + e^{-z})^{-1}$. Let $S_{t;J}^{(i)}$ be the standard deviation and $\mu_{t;J}^{(i)}$ be the mean of $\sigma(f(\mathbf{x}_i; \mathbf{w}_t))$ within a window from time t to t+J-1. Denote T_v and T_{vm} as the first time when $S_{t;J}^{(1)} > S_{t;J}^{(2)}$ and $S_{t;J}^{(1)} (1 - \mu_{t;J}^{(i)}) > S_{t;J}^{(2)} (1 - \mu_{t;J}^{(2)})$ occurs, respectively. If the learning rate is small enough, then $T_{vm} < T_v$.

Beta Sampling

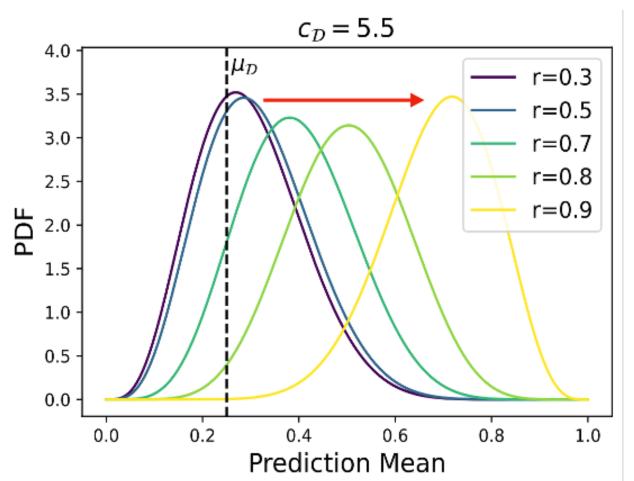
Key Intuition:

The higher the pruning ratio gets, the more easy samples are needed.

We design the Beta PDF function to assign a sampling probability concerning a prediction mean as follows:

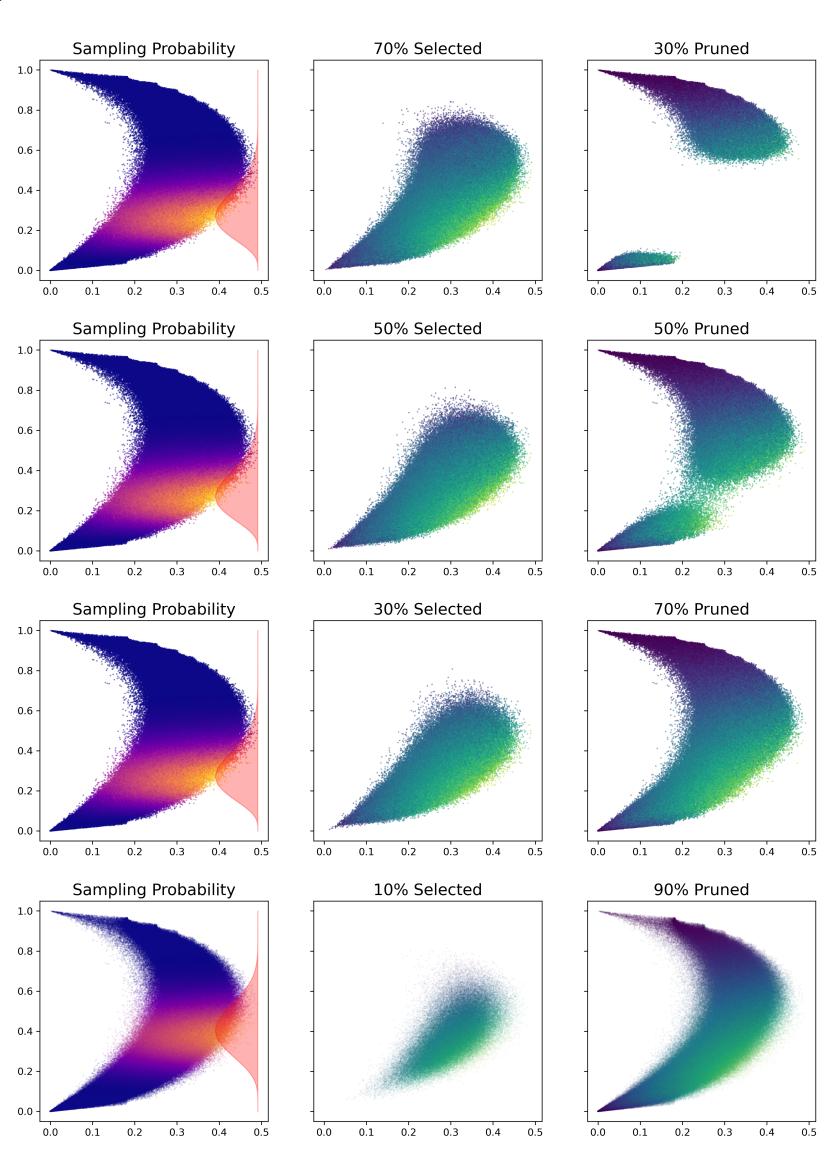
$$\beta_r = 15(1 - \mu_D) \cdot (1 - r^{c_D}),$$
 $\alpha_r = 15 - \beta_r.$

- r : pruning ratio
- μ_D : prediction mean of the highest score sample
- ullet c_D : hyperparameter that determines the nonlinearity

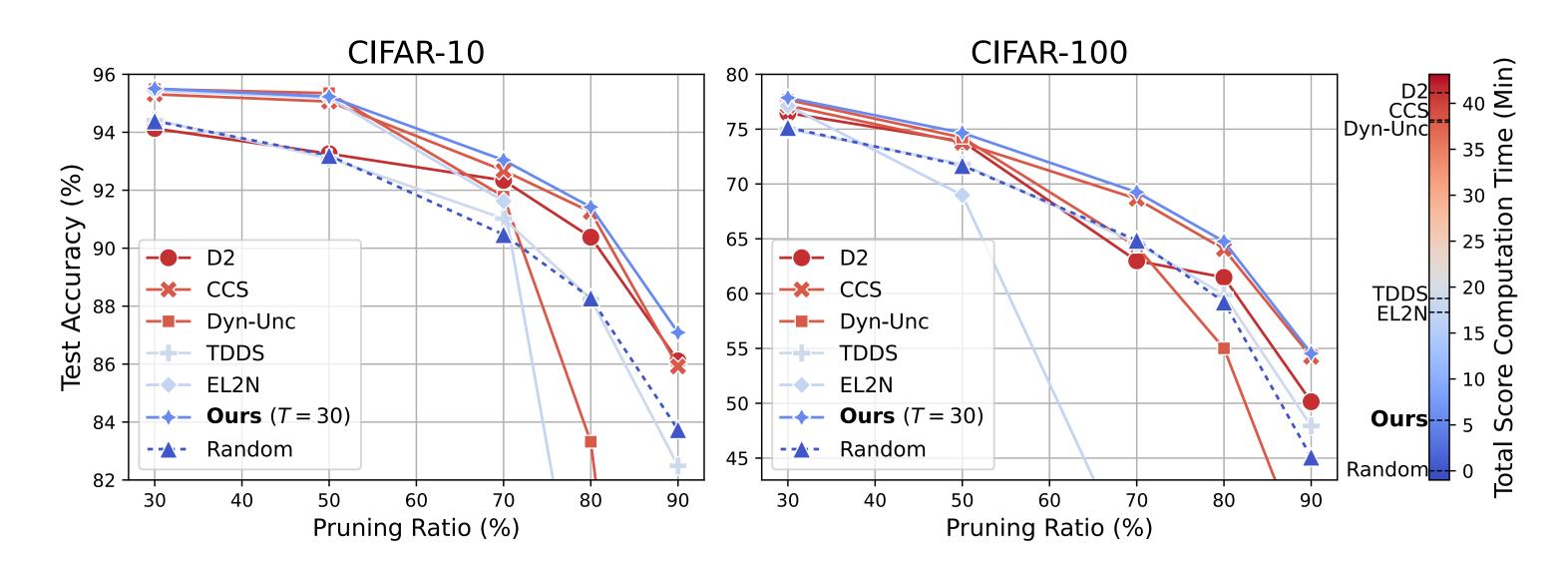


Beta function move progressively with r, starting from μ_D ($r \simeq 0$, small pruning ratio) to one.

Beta Sampling



Experimental Results

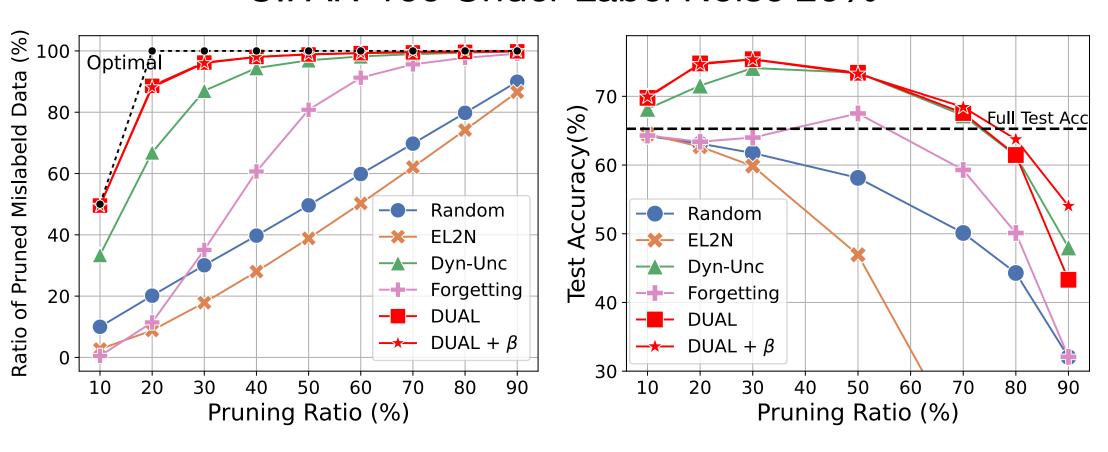


ImageNet-1K

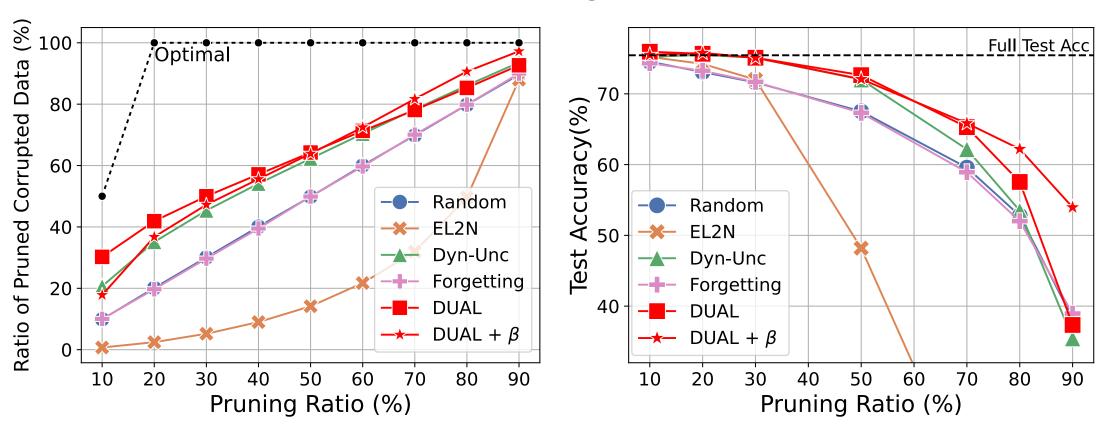
Pruning ratio	30%	50%	70%	80%	90%	
Random	72.2	70.3	66.7	62.5	52.3	
CCS	72.3	70.5	67.8	64.5	57.3	T = 90
D2	72.9	71.8	68.1	65.9	55.6	
DUAL	72.8	71.5	68.6	64.7	53.1	T = 60
DUAL+Beta	73.3	72.3	69.4	66.5	60.0	$\int I - 00$

Experimental Results

CIFAR-100 Under Label Noise 20%



CIFAR-100 Under Image Corruption 20%



Github