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The Problem

• Continuous stream of data points
• Real-time detections – must process each point in constant time
• Unsupervised - No feedback on whether predictions were correct

? ? ?⚠ ? ?
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• No single algorithm works well across datasets
• IForestASD (Ding & Fei, ‘13) performs the best on Pendigits dataset
• RRCF (Guha et. al., ‘16) performs the best on Letter dataset
• xStream (Manzoor et. al., ‘18) performs the best on INSECTS dataset
• Rule based method (Shewhart, ‘31) performs the best on an internal 

telemetry dataset

• Data distributions change over time – must adapt to non stationarity 
over time
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Key Insight

• Anomalies by definition are inherently rare
• Good anomaly detectors should output small scores most of the 

time
• Maintain weights for each detector – detectors with consistently 

lower scores have higher weight and vice versa
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Weight Updates
Penalize high scores

Base detectors backward pass

Weighted aggregationFinal anomaly score

- Unsupervised
- O(1) time and space

- Adaptive to distribution 
shifts

- Agnostic to choice of base 
detectors

SEAD
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SEAD reassigns 
detector weights 
away from 
misfiring xStream 
detector
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Experimental Evaluation

• 35x faster than offline methods with comparable detection 
performance
• Best average rank among all base methods and simple aggregators 

mean, max and min
• 13 base methods with different parameter configurations of IForestASD, 

xStream and RRCF and a single rule-based method
• Comparison on 15 datasets including non-stationary INSECTS datasets

• SEAD++ optimization has detection performance comparable to 
simple aggregators with ~2x speedup in runtime



Conclusions and Future Work



Conclusions and Future Work

• We propose SEAD – the first unsupervised online model selection 
algorithm for anomaly detection



Conclusions and Future Work

• We propose SEAD – the first unsupervised online model selection 
algorithm for anomaly detection
• Initializing SEAD weights using existing offline datasets is interesting 

future work



Conclusions and Future Work

• We propose SEAD – the first unsupervised online model selection 
algorithm for anomaly detection
• Initializing SEAD weights using existing offline datasets is 

interesting future work
• Future work can also investigate open regret guarantees on SEAD 

that holds under non-stationarity



Thank you!


