IMPACT: Iterative Mask-based Parallel Decoding for Text-to-Audio Generation with Diffusion Modeling

Kuan-Po Huang ^{12†} Shu-wen Yang ^{12†} Huy Phan ² Bo-Ru Lu ² Byeonggeun Kim ² Sashank Macha ² Qingming Tang ² Shalini Ghosh ² Hung-yi Lee ¹ Chieh-Chi Kao ² Chao Wang ²

ICML 2025

Presenter: Kuan-Po, Huang

Text-to-audio generation

• Converting a written description into a corresponding sound or audio.

Background

Problems of current Text-to-audio systems:

- High performance on objective metrics, but slow: AudioLDM, Tango, ...
 - Heavy-parameterized diffusion-based models

- Fast, but poor performance on objective metrics: MAGNET
 - Iterative parallel decoding discrete tokens

Background

Problems of current Text-to-audio systems:

- High performance on objective metrics, but slow: AudioLDM, Tango, ...
 - Heavy-parameterized latent diffusion-based models (LDMs) operating on continuous representations
- Fast, but poor performance on objective metrics: MAGNET
 - Iterative parallel decoding discrete tokens

Propose:

Integrate iterative parallel decoding with LDMs operating on continuous representations using a light-weight diffusion head for text-to-audio.

Integrate iterative parallel decoding with LDMs operating on continuous representations

Continuous representations

Training: Mask generative modeling

Continuous representations

Training Phase:
Mask-based Generative
Modeling

$$\arg\min_{\{\phi,\theta\}} \sum_{\{i \mid M[i]=1\}} \left\| \epsilon - \epsilon_{\theta}(z_i^{\hat{t}} \mid \hat{t}, h_i) \right\|^2$$

Training: Mask generative modeling (Unconditional)

Continuous representations

Training Phase:

Mask-based Generative

Modeling

(Unconditional pre-training)

• Inference: Iterative parallel decoding

• Iterative parallel decoding (Inference Phase): Gradually generate the latent sequence

Decoding iterations Iteration 0: Iteration t: All positions masked Randomly select a subset of masked positions in iteration t - 1

Results on objective and subjective metrics

Latency: Required time for generating a batch of 8 audios. (measured in seconds)

AudioCaps	# para	FD ↓	FAD ↓	KL↓	IS ↑	CLAP ↑	REL ↑	OVL ↑	diff.	Lat. ↓
Ground Truth	-	_	-	-	-	0.373	4.43	3.57	-	-
AudioGen	1.5B	16.51	2.11	1.54	9.64	0.315		-	-	37.2
Tango	866M	24.42	1.73	1.27	7.70	0.313	_	-	200	182.6
Tango-full-ft	866M	18.93	2.19	1.12	8.80	0.340	_	-	200	181.6
Tango-AF&AC-FT-AC	866M	21.84	2.35	1.32	9.59	0.343	_	-	200	182.6
Tango 2	866M	20.66	2.63	1.12	9.09	0.375	4.13	3.37	200	182.3
EzAudio-L (24kHz)	596M	15.59	2.25	1.38	11.35	0.391	4.05	3.44	50	29.1
EzAudio-XL (24kHz)	874M	14.98	3.01	1.29	11.38	0.387	4.00	3.35	50	40.2
MAGNET-S	300M	23.02	3.22	1.42	9.72	$\overline{0.287}$	3.83	2.84	_	6.9
MAGNET-L	1.5B	26.19	2.36	1.64	9.10	0.253	_	-	_	24.8
Make-an-Audio 2	160M	16.23	2.03	1.29	9.95	0.345	_	-	100	15.9
AudioLDM2-full	346M	32.14	2.17	1.62	6.92	0.273	3.74	3.19	200	96.1
AudioLDM2-full-large	712M	33.18	2.12	1.54	8.29	0.281	-	-	200	195.7
IMPACT base, dec iter 32	193M	14.90	1.07	1.05	10.06	0.364	4.20	3.46	100	11.2
IMPACT base, dec iter 64	193M	14.72	<u>1.13</u>	<u>1.09</u>	10.03	0.353	4.31	3.51	100	22.2

Latency: Required time for generating a batch of 8 audios. (measured in seconds)

IMPACT using 16 decoding iterations (5.7s) is faster than MAGNET-S (6.9s), while having better FAD, KL, IS, and CLAP score.

IMPACT using 16 decoding iterations (5.7s) is faster than MAGNET-S (6.9s), while having better FAD, KL, IS, and CLAP score.

IMPACT using 16 decoding iterations (5.7s) is faster than MAGNET-S (6.9s), while having better FAD, KL, IS, and CLAP score.

Conclusions

- State-of-the-art performance on objective metrics FD and FAD.
- State-of-the-art performance on subjective metrics for overall audio quality and text-relevancy.
- Faster than current fastest Text-to-audio model, MAGNET.

