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Preliminaries: Closed-form Solutions to DEs

Example: Heat Equation

Governing Equation:
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Boundary Conditions:
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Initial Condition:
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Closed-form solution:
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Goal: To Find a Closed-form solution ො𝑢 𝒙 to a differential equation (DE), expressed as a finite combination

of known functions, such as elementary functions (e.g., polynomials, exponentials, trigonometric functions).



Reviews: Numerical Methods

Traditional numerical 
methods (e.g., FEM) 

The numerical accuracy and
convergence depend on meshing

Physics-informed Neural 
Networks

The accuracy and convergence of
the solution are limited.

Weaknesses of All Numerical Methods

W1. Limited accuracy and stability.

W2. Low interpretability.

(𝒙, 𝑡)

Neural Network: 𝜽

෤𝑢
Neural Operators

Requiring a large amount of 
labeled data.

Physics, PDEs, and Numerical Modeling, COMSOL Multiphysics Cyclopedia 2019 

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equation, Journal of Computational Physics 2019

Learning nonlinear operators via deeponet based on the universal approximation theorem of operators, Nature machine intelligence 2021



Reviews: Symbolic Methods

Expression Structure Search

Representative algorithms:

Genetic Programming1, Colony Programming2, etc.

Limitations:

• Extremely time-consuming

• Poor scalability to high-dimensional PDEs

• Tend to produce overly complex expressions

The core challenge lies in balancing three critical aspects:

A1. Maintaining strict adherence to physical laws.

A2. Ensuring computational efficiency

A3. Preserving human-interpretable symbolic forms.

Symbolically Structured Neural Networks 

Representative algorithms:

FEX3, MSFL4, etc.

Limitations:

• Low accuracy and poor convergence

• Limited interpretability

• Hard to guarantee exact solution form

1 Genetic programming based symbolic regression for analytical solutions to differential equations, arXiv:2302.03175, 2023

2 Solving differential equations with ant colony programming. Applied Mathematical Modelling 2019

3 Finite expression method for solving high-dimensional partial differential equations. arXiv:2206.10121, 2022.

4 Symbolically Solving Partial Differential Equations using Deep Learning, arXiv:2011.06673, 2020



Motivations

Risk-Seeking Reinforcement Learning

• Optimize symbolic expressions using policy gradient.

• The policy gradient depends on the reward of the top-𝜖
expressions.

Parametric expressions

• The symbolic solution is represented as a parametric expression 
with respect to a single variable.

• The complete solution is constructed recursively from these 
parametric expressions.

Contributions

1) We propose SSDE, a reinforcement learning-based method for closed-form solutions’ structure search.

2) We introduce the RSCO algorithm for efficient constant optimization.

3) We develop a recursive exploration strategy for solving high-dimensional PDEs dimension by dimension.
Closed-form Solutions: A New Perspective on Solving Differential Equations. ICML2025
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Policy Gradient
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Proposed Method

Algorithm Overview

(a) The RNN generates skeletons for candidate solutions. 

(b) Sampled points are fed into the candidate skeletons to construct
computational graphs with constants 𝑐𝑖 as parameters.

(c) Physical constraints are built via automatic differentiation.

(d) Constants are optimized to minimize 𝐿𝑠−𝑡 .

(e) The evaluator computes rewards based on physical constraints
to train RNN.

The process iterates until a valid solution is found.

Closed-form Solutions: A New Perspective on Solving Differential Equations. ICML 2025

Physics-regularized Loss:
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Risk-Seeking Policy Gradient:

Reward:
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Proposed Method

Recursion-Based Exploration

Closed-form Solutions: A New Perspective on Solving Differential Equations. ICML 2025

Distinguish between fixed constants and 𝜶 parameters:

Parameters are optimized as vectors over the unobserved space. Low-variance parameters are identified as
constants. When only one unobserved dimension remains, the parameters are directly optimized as constants.

Risk-Seeking Constant Optimization

Coarse optimization by minimizing

1 2MS S E M Es t  −
 = +

Select top-𝝐 expressions by reward 

and refine by minimizing s t−

Parametric expression

Solution ෤𝑢𝑘(𝑥𝑖 , Ԧ𝛼𝑘 𝒙−𝑖 )
is only respect to observed

variable 𝑥𝑖

Recursive call

The parameter Ԧ𝛼𝑘 are

viewed as new parametric

expressions.

Recursive case

Get Closed-form Solution

෤𝑢𝑘(𝑥𝑖 , Ԧ𝛼𝑘) by RL agent.

Base case

Terminates once the last

variable is observed.



Experimental Results

Closed-form Solutions: A New Perspective on Solving Differential Equations. ICML 2025

Benchmark

• Time-dependent PDE systems

• Time-independent PDE systems

• Linear PDEs

• Nonlinear PDEs

Results of SSDE

• Successfully identified the correct

symbolic skeletons for all test cases

• Discovered solutions span from

simple polynomials to complex

nested nonlinear expressions



Experimental Results

Closed-form Solutions: A New Perspective on Solving Differential Equations. ICML 2025

Compared with other mainstream methods

Ablation Studies

Left: Computational 
efficiency with RSCO

Right: Recovery rate 
without RSCO or 
Recursive Exploration



Conclusion

• We propose a reinforcement learning-based architecture for analytically solving
differential equations using parametric expressions. The approach significantly enhances
the ability to discover true solution structures in high-dimensional settings.

• We demonstrate that SSDE successfully solves all benchmark PDEs with exact symbolic
skeletons and significantly outperforms existing mainstream methods.

Closed-form Solutions: A New Perspective on Solving Differential Equations. ICML 2025

Limitations

SSDE currently faces efficiency limitations when applied to systems of differential equations, due to their
inherently coupled solution structures. Fully exploring the solution space requires multiple RNNs and novel
techniques for evaluating reward-guided gradients. Addressing this challenge is a key direction for future work.
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