

Quantifying Prediction Consistency Under Fine-Tuning Multiplicity in Tabular LLMs

Faisal Hamman¹ Pasan Dissanayake¹ Saumitra Mishra ² Freddy Lecue² Sanghamitra Dutta¹

¹University of Maryland, College Park, ²JPMorgan Al Research

Motivation: Tabular LLMs in High-Stakes Applications

Few-shot classification on tabular datasets:

Tabular LLMs perform commendably with very little labeled data due to their pretrained knowledge [1,2]

Paucity of training data + large parameter space >> Fine-tuning multiplicity in Tabular LLMs

^[1] Hegselmann, et.al., TabLLM: Few-shot Classification of Tabular Data with Large Language Models, AISTATS 2023.

^[2] van Breugel, B. and van der Schaar, M. Position: Why tabular foundation models should be a research priority, ICML 2024.

What is fine-tuning multiplicity?

Model Multiplicity in Tabular LLMs

Equally well-performing models fine-tuned from the same pre-trained LLM under slightly varying conditions (e.g. random seeds), exhibit comparable performance yet generate inconsistent predictions for the same input datapoints.

In high-stakes decision-making, arbitrary predictions can have significant consequences

Main Contributions

- Unravel the nature of fine-tuning multiplicity in Tabular LLMs
- A measure to quantify prediction consistency under fine-tuning multiplicity that we call local stability –
 does not need expensive model retraining multiple times
- Probabilistic guarantees over a broad class of equally-well-performing fine-tuned models
- Experimental validation: Local stability measure highly correlates with actual fine-tuning multiplicity

Our Proposed Local Stability Measure

Local Stability

$$S_{k,\sigma}(x,f) = \frac{1}{k} \sum_{x_i \in N_{x,k}} f(x_i) - \frac{1}{k} \sum_{x_i \in N_{x,k}} |f(x) - f(x_i)|$$

$$N_{x,k} = \{x_1, x_2, \dots, x_k\} \subset B(x, \sigma) = \{x' \in \mathcal{X} : ||x' - x||_2 < \sigma\}.$$

Is a set of k points sampled independently from a distribution over a hypersphere of radius σ centered at x.

Probabilistic Guarantee

Informally Stated: Under mild assumptions, datapoints with high local stability will remain consistent with high probability over a broad class of equally-well-performing fine-tuned models.

Experiments

Goal: To compare our local stability measure (without retraining multiple times) with actual fine-tuning multiplicity across multiple models

Multiplicity Metrics [3]: Pairwise Disagreement, Arbitrariness, Prediction Variance and Range

Datasets: Real-world tabular datasets (e.g., German Credit, Bank, Heart, Car, Diabetes, Adult) under **few shots** (64, 128, 512).

Models: LLMs such as *Bigscience T0* and Google *Flan T5* using T-Few and LoRA.

Additional Baselines: Prediction confidence, Dropout-based methods [4], Adversarial Weight Perturbation (AWP) [5].

[3] J. Gomez, C. Machado, L. Monteiro, and F. Calmon "Algorithmic Arbitrariness in Content Moderation", FAccT '24.
[4] Hsu, H., Li, G., Hu, S., and Chen, C.-F. Dropout-based rashomon set exploration for efficient predictive multiplicity estimation. ICLR, 2024
[5] Hsu, H. and Calmon, F. Rashomon capacity: A metric for predictive multiplicity in classification. Neurips, 2022

Key Finding: Strong Correlation Observed Between our Local Stability Measure and Actual Fine-Tuning Multiplicity

Evaluated multiplicity (assessed on 40 retrained models) versus our **local stability measure** (evaluated on one model) for the 128-shot setting.

Dataset	Number of Shots	Measure	Arbit.	Pairwise Disag.	Prediction Variance	Prediction Range
Adult	128	Pred. Prob. Drop-Out Stability	0.67 0.74 0.80	0.62 0.83 0.96	0.30 0.69 0.84	0.54 0.81 0.91
German	128	Pred. Prob. Drop-Out Stability	0.57 0.50 0.54	0.57 0.56 0.54	0.86 0.74 0.87	0.86 0.84 0.87
Diabetes	128	Pred. Prob. Drop-Out Stability	0.88 0.89 0.92	0.93 0.92 0.95	0.93 0.92 0.93	0.95 0.94 0.95
Bank	128	Pred. Prob. Drop-Out Stability	0.54 0.62 0.79	0.57 0.70 0.84	0.73 0.75 0.87	0.62 0.51 0.86
Heart	128	Pred. Prob. Drop-Out Stability	0.61 0.64 0.89	0.46 0.76 0.90	0.50 0.74 0.97	0.26 0.83 0.87
Car	128	Pred. Prob. Drop-Out Stability	0.56 0.63 0.97	0.26 0.66 0.91	0.29 0.57 0.93	0.01 0.52 0.94

- Our local stability measure S(x, f) shows a higher correlation with actual multiplicity compared to baselines: prediction confidence f(x) or Drop-out method.
- Our local stability measure S(x, f) better informs multiplicity of a datapoint
- Additional experiments in the paper

Computational Efficiency Benefits

Total train and eval runtime across baselines.

Adult test dataset

Measure	Arbit.	Pairwise Disag.	Pred. Var.	Pred. Range	Train Time	Eval. Time
Re-training	1.00	1.00	1.00	1.00	456 mins	94.7 mins
Pred. Prob.	0.63	0.61	0.39	0.63	4.56 mins	0.51 mins
Drop-Out	0.79	0.78	0.70	0.86	4.56 mins	102 mins
AWP	0.65	0.71	0.55	0.72	4.56 mins	977.6 mins
Stability	0.81	0.96	0.80	0.93	4.56 mins	19.4 mins

Local stability measure has **significantly lower runtime** compared to the retraining and other baselines **while maintaining strong correlation** with multiplicity metrics.

Conclusion

Poster - ID 46165 Wed 16 Jul 4:30 p.m.

Thank You!

- Novel local stability measure to quantify prediction consistency under fine-tuning multiplicity, using only a single model, avoiding expensive retraining (fine-tuning) multiple times.
- Probabilistic guarantee showing predictions with high local stability remain consistent across a broad class of fine-tuned models with high probability.
- Empirical Results demonstrated that our stability measure outperforms baselines in capturing consistency, with superior correlation to fine-tuning multiplicity across various datasets.
- Computational Efficiency: Our method reduces complexity by avoiding retraining multiple models, requiring only inference and sampling from the embedding space.
- Implications for Trust: The measure helps practitioners assess which predictions to trust, reducing risks of inconsistent or conflicting outcomes in high-stakes applications.

