Quantifying Prediction Consistency Under Fine-Tuning Multiplicity in Tabular LLMs Faisal Hamman¹ Pasan Dissanayake¹ Saumitra Mishra ² Freddy Lecue² Sanghamitra Dutta¹ ¹University of Maryland, College Park, ²JPMorgan Al Research ## Motivation: Tabular LLMs in High-Stakes Applications #### **Few-shot classification** on tabular datasets: Tabular LLMs perform commendably with very little labeled data due to their pretrained knowledge [1,2] Paucity of training data + large parameter space >> Fine-tuning multiplicity in Tabular LLMs ^[1] Hegselmann, et.al., TabLLM: Few-shot Classification of Tabular Data with Large Language Models, AISTATS 2023. ^[2] van Breugel, B. and van der Schaar, M. Position: Why tabular foundation models should be a research priority, ICML 2024. ## What is fine-tuning multiplicity? ### Model Multiplicity in Tabular LLMs Equally well-performing models fine-tuned from the same pre-trained LLM under slightly varying conditions (e.g. random seeds), exhibit comparable performance yet generate inconsistent predictions for the same input datapoints. In high-stakes decision-making, arbitrary predictions can have significant consequences #### **Main Contributions** - Unravel the nature of fine-tuning multiplicity in Tabular LLMs - A measure to quantify prediction consistency under fine-tuning multiplicity that we call local stability – does not need expensive model retraining multiple times - Probabilistic guarantees over a broad class of equally-well-performing fine-tuned models - Experimental validation: Local stability measure highly correlates with actual fine-tuning multiplicity ## Our Proposed Local Stability Measure ## **Local Stability** $$S_{k,\sigma}(x,f) = \frac{1}{k} \sum_{x_i \in N_{x,k}} f(x_i) - \frac{1}{k} \sum_{x_i \in N_{x,k}} |f(x) - f(x_i)|$$ $$N_{x,k} = \{x_1, x_2, \dots, x_k\} \subset B(x, \sigma) = \{x' \in \mathcal{X} : ||x' - x||_2 < \sigma\}.$$ Is a set of k points sampled independently from a distribution over a hypersphere of radius σ centered at x. ## **Probabilistic Guarantee** Informally Stated: Under mild assumptions, datapoints with high local stability will remain consistent with high probability over a broad class of equally-well-performing fine-tuned models. # **Experiments** **Goal:** To compare our local stability measure (without retraining multiple times) with actual fine-tuning multiplicity across multiple models Multiplicity Metrics [3]: Pairwise Disagreement, Arbitrariness, Prediction Variance and Range **Datasets:** Real-world tabular datasets (e.g., German Credit, Bank, Heart, Car, Diabetes, Adult) under **few shots** (64, 128, 512). **Models:** LLMs such as *Bigscience T0* and Google *Flan T5* using T-Few and LoRA. **Additional Baselines:** Prediction confidence, Dropout-based methods [4], Adversarial Weight Perturbation (AWP) [5]. [3] J. Gomez, C. Machado, L. Monteiro, and F. Calmon "Algorithmic Arbitrariness in Content Moderation", FAccT '24. [4] Hsu, H., Li, G., Hu, S., and Chen, C.-F. Dropout-based rashomon set exploration for efficient predictive multiplicity estimation. ICLR, 2024 [5] Hsu, H. and Calmon, F. Rashomon capacity: A metric for predictive multiplicity in classification. Neurips, 2022 # Key Finding: Strong Correlation Observed Between our Local Stability Measure and Actual Fine-Tuning Multiplicity **Evaluated multiplicity** (assessed on 40 retrained models) versus our **local stability measure** (evaluated on one model) for the 128-shot setting. | Dataset | Number of Shots | Measure | Arbit. | Pairwise
Disag. | Prediction
Variance | Prediction
Range | |----------|-----------------|--------------------------------------|-----------------------------|-----------------------------|------------------------------------|------------------------------------| | Adult | 128 | Pred. Prob.
Drop-Out
Stability | 0.67
0.74
0.80 | 0.62
0.83
0.96 | 0.30
0.69
0.84 | 0.54
0.81
0.91 | | German | 128 | Pred. Prob.
Drop-Out
Stability | 0.57
0.50
0.54 | 0.57
0.56
0.54 | 0.86
0.74
0.87 | 0.86
0.84
0.87 | | Diabetes | 128 | Pred. Prob.
Drop-Out
Stability | 0.88
0.89
0.92 | 0.93
0.92
0.95 | 0.93
0.92
0.93 | 0.95
0.94
0.95 | | Bank | 128 | Pred. Prob.
Drop-Out
Stability | 0.54
0.62
0.79 | 0.57
0.70
0.84 | 0.73
0.75
0.87 | 0.62
0.51
0.86 | | Heart | 128 | Pred. Prob.
Drop-Out
Stability | 0.61
0.64
0.89 | 0.46
0.76
0.90 | 0.50
0.74
0.97 | 0.26
0.83
0.87 | | Car | 128 | Pred. Prob.
Drop-Out
Stability | 0.56
0.63
0.97 | 0.26
0.66
0.91 | 0.29
0.57
0.93 | 0.01
0.52
0.94 | - Our local stability measure S(x, f) shows a higher correlation with actual multiplicity compared to baselines: prediction confidence f(x) or Drop-out method. - Our local stability measure S(x, f) better informs multiplicity of a datapoint - Additional experiments in the paper # Computational Efficiency Benefits Total train and eval runtime across baselines. ### Adult test dataset | Measure | Arbit. | Pairwise
Disag. | Pred.
Var. | Pred.
Range | Train
Time | Eval.
Time | |-------------|--------|--------------------|---------------|----------------|---------------|---------------| | Re-training | 1.00 | 1.00 | 1.00 | 1.00 | 456 mins | 94.7 mins | | Pred. Prob. | 0.63 | 0.61 | 0.39 | 0.63 | 4.56 mins | 0.51 mins | | Drop-Out | 0.79 | 0.78 | 0.70 | 0.86 | 4.56 mins | 102 mins | | AWP | 0.65 | 0.71 | 0.55 | 0.72 | 4.56 mins | 977.6 mins | | Stability | 0.81 | 0.96 | 0.80 | 0.93 | 4.56 mins | 19.4 mins | Local stability measure has **significantly lower runtime** compared to the retraining and other baselines **while maintaining strong correlation** with multiplicity metrics. # Conclusion Poster - ID 46165 Wed 16 Jul 4:30 p.m. ## Thank You! - Novel local stability measure to quantify prediction consistency under fine-tuning multiplicity, using only a single model, avoiding expensive retraining (fine-tuning) multiple times. - Probabilistic guarantee showing predictions with high local stability remain consistent across a broad class of fine-tuned models with high probability. - Empirical Results demonstrated that our stability measure outperforms baselines in capturing consistency, with superior correlation to fine-tuning multiplicity across various datasets. - Computational Efficiency: Our method reduces complexity by avoiding retraining multiple models, requiring only inference and sampling from the embedding space. - Implications for Trust: The measure helps practitioners assess which predictions to trust, reducing risks of inconsistent or conflicting outcomes in high-stakes applications.