

GenZSL: Generative Zero-Shot Learning Via Inductive Variational Autoencoder

Shiming Chen¹, Dingjie Fu², Salman Khan^{1,3}, Fahad Shahbaz Khan^{1,4}

¹Mohamed bin Zayed University of AI ²Huazhong University of Science and Technology ³Australian National University ⁴Linköping University

- Zero-Shot Learning
- Motivation
- The Proposed GenZSL
- Advantages

Zero-Shot Learning

What is zero-shot learning? Test Time **Training Time** conventional ZSL generalized ZSL tiger bobcat zebra horse killer whale dolphin \mathbf{v}^{te}

- Zero-Shot Learning
- Motivation
- The Proposed GenZSL
- Advantages

Motivation

- How to mimic human-level concept learning to inducting new class samples from similar seen classes?
- How to eliminate the dependence on expert-annotated strong class semantic vectors?

- Zero-Shot Learning
- Motivation
- The Proposed GenZSL
- Advantages

The Proposed GenZSL

Pipeline of our GenZSL

Class Diversity Promotion

Singular value decomposition of class semantic vectors

$$Z = [z^1, z^2, \cdots, z^C],$$

$$U, S, V = svd(Z).$$

 $U = [e^1, e^2, \dots, e^C]$ is the orthonormal basis.

• Removing the major component e^1

$$U' = [e^2, e^3, \cdots, e^C],$$

$$P = U'U'^T,$$

$$\tilde{Z} = P \cdot Z = \{\tilde{z}^1, \tilde{z}^2, \cdots, \tilde{z}^C\}$$

Semantically Similar Sample Selection

Selecting similar samples from seen classes using the cosine similarity

$$c^{refer} = arg \max_{topk(c^s)} \frac{\tilde{z}^{target} \times \tilde{z}^{c^s}}{\parallel \tilde{z}^{target} \parallel \cdot \parallel \tilde{z}^{c^s} \parallel},$$

 \tilde{z}^{c^s} is top-k class semantic vectors closed to target class semantic vectors \tilde{z}^{target}

- Zero-Shot Learning
- Motivation
- The Proposed GenZSL
- Advantages

Advantages

The proposed GenZSL is **simple**, **efficient**, and **effective** to ZSL:

- 1. It eliminates the dependence on expert-annotated class semantic vectors
- 2. It proposes a novel inductive variational autoencoder for generative ZSL
- 3. It demonstrates superiority and potential of our GenZSL with significant efficacy and efficiency over f-VAEGAN, e.g., 24.7% performance gains and more than 60× faster training speed on AWA2

Thank You

Paper Link

Contact Link

