Learning Imbalanced Data with Beneficial Label Noise Guangzheng Hu, Feng Liu, Mingming Gong, Guanghui Wang, Liuhua Peng #### Fact: Class Imbalance biases the Decision Boundary - Fraud transaction detection, Rare disease diagnosis - Traditional classifier tends to classify all samples into negative class (majority class) while maximizing accuracy on imbalanced data. $$S^{Acc} = \left\{ x^* \in \mathcal{X} : \frac{P_1(x^*)}{P_0(x^*)} = \frac{\pi_0}{\pi_1} \right\} \qquad S^{F1} = \left\{ x^* \in \mathcal{X} : \frac{P_1(x^*)}{P_0(x^*)} = \frac{\mathcal{F}1(x^*)}{2 - \mathcal{F}1(x^*)} \frac{\pi_0}{\pi_1} \right\}$$ $$S^{\text{Resample}} = \left\{ x^* \in \mathcal{X} : \frac{P_1(x^*)}{P_0(x^*)} = \alpha \frac{\pi_0}{\pi_1} \right\}$$ **Information Loss Generative Error** ## Label-Noise-based Rebalancing Approach Fact: Label Noise also biases the decision boundaries $$\rho(x) = Pr(Y^* = 1 \mid X = x, Y = 0) \quad \propto \eta(x)$$ $$S^* = \left\{ x^* \in \mathcal{X} : \frac{P_1(x^*)}{P_0(x^*)} = [1 - 2\rho(x^*)] \frac{\pi_0}{\pi_1} \right\}$$ - Intuition: Only the majority class samples with the most similar features to the minority class are likely to be flipped. - Advantages: a) Minimum data-editing, b) Model/data-agnostic - 3-Steps: Z-score Standardlization, tanh Normalization, Label Flipping $$\mathcal{Z}[i_{\text{majority}}] \leftarrow \frac{\hat{\eta}[i_{\text{majority}}] - \mu}{\sigma}$$ $$\rho[i_{\text{majority}}] \leftarrow max(\text{tanh}(\mathcal{Z}[i_{\text{majority}}] - t_{flip}), 0)$$ $$U \leftarrow \text{Bernoulli}(\rho[i_{\text{majority}}])$$ - Minority classes have only 30 samples: "5", "7", "9". Each majority class has 6000 samples. - Improves the overall accuracy on balanced test set from 89.93% to 94.75%. - Flipped samples shares similar features with the minority classes. - Similar features are occupied by majority. - Biased decision boundary corrected by only 65 label noises. ### Experiment Results — Image Classification | | Step-wise | e Cifar-10 | Step-wise Cifar-100 | | | |----------|------------------|-----------------------------------|---------------------|--------------------|--| | | $ m Acc_{MI}$ | $\mathrm{Acc}_{\mathrm{overall}}$ | $ m Acc_{MI}$ | $ m Acc_{overall}$ | | | LDAM | 66.41±0.2 | 77.47 ± 0.06 | 19.80±0.02 | 45.23±0.03 | | | LDAM+RSG | 67.02 ± 0.07 | 77.74 ± 0.08 | 21.67 ± 0.04 | 45.51 ± 0.02 | | | LDAM+LNR | 75.06±0.09 | 78.12 ± 0.03 | 25.84±0.06 | 45.63 ± 0.02 | | | GCL | 56.78 ± 0.08 | 74.80 ± 0.04 | 5.48 ± 0.03 | 43.87±0.07 | | | GCL+LNR | 72.22 \pm 0.05 | $80.8 {\pm} 0.02$ | 26.48±0.03 | 46.20 ± 0.03 | | | | Long-tailed Cifar-10 | | | | | | |--------------------|-----------------------|-------------------------------|------------------|--------------------------------|--|--| | | Many-shot | Medium-shot | Few-shot | Overall | | | | LDAM | 82.62±0.06 | 76.12±0.1 | 75.01±0.1 | 78.39 ± 0.03 | | | | LDAM+RSG | 81.56±0.15 | 77.03 \pm 0.1 | 77.30 ± 0.1 | 78.93 ± 0.02 | | | | LDAM+LNR | 81.17±0.08 | 76.42 ± 0.01 | 79.83 ± 0.1 | 79.34 \pm 0.01 | | | | GCL | 88.60±0.04 | 79.57 ± 0.01 | 70.08 ± 0.2 | 80.55 ± 0.03 | | | | GCL+LNR | 88.20±0.04 | 79.50 ± 0.07 | 77.60 ± 0.2 | 82.41 ± 0.03 | | | | MiSLAS | 91.00±0.14 | 80.17 ± 0.22 | 75.72 ± 0.19 | 82.10 ± 0.12 | | | | MiSLAS+ReMix | 90.04 ± 0.20 | 79.82 ± 0.16 | 79.78 ± 0.20 | 82.92 ± 0.10 | | | | MiSLAS+SelMix(10k) | 86.81 ± 0.22 | 80.50 ± 0.17 | 83.52 ± 0.21 | 83.29 ± 0.07 | | | | MiSLAS+SelMix(1k) | 81.61 ± 0.14 | 79.89 ± 0.13 | 87.60 ± 0.20 | 82.72 ± 0.22 | | | | MiSLAS+SelMix(imb) | 82.21 ± 0.13 | 81.44 ± 0.11 | 81.9 ± 0.21 | 81.8 ± 0.09 | | | | MiSLAS+LNR | 84.62±0.22 | 80.90 ± 0.22 | 86.07 ± 0.19 | 83.56 ± 0.08 | | | | | Long-tailed Cifar-100 | | | | | | | | Many-shot | Medium-shot | Few-shot | Overall | | | | LDAM | 62.21±0.05 | 43.28 ± 0.08 | 20.83 ± 0.03 | 42.98 ± 0.03 | | | | LDAM+RSG | 60.46 ± 0.05 | 43.88 ± 0.1 | 22.57 ± 0.09 | 43.08 ± 0.07 | | | | LDAM+LNR | 61.04 ± 0.03 | 43.36 ± 0.02 | 24.11 ± 0.04 | 43.58 ± 0.02 | | | | GCL | 67.16±0.03 | 46.63 ± 0.06 | 13.57 ± 0.06 | 43.90 ± 0.03 | | | | GCL+LNR | 57.11±0.07 | 51.38 ± 0.07 | 25.02 ± 0.09 | 45.48 ± 0.05 | | | | MiSLAS | 62.05±0.09 | 48.42 ± 0.11 | 26.07 ± 0.12 | 46.85 ± 0.09 | | | | MiSLAS+ReMix | 59.06±0.21 | 49.22 ± 0.09 | 27.93 ± 0.10 | 46.59 ± 0.15 | | | | MiSLAS+SelMix(10k) | 60.93 ± 0.12 | 52.06 ± 0.17 | 25.10 ± 0.13 | 47.43 ± 0.10 | | | | MiSLAS+SelMix(1k) | 61.27±0.08 | 50.82 ± 0.18 | 21.34 ± 0.12 | 46.04 ± 0.11 | | | | MiSLAS+SelMix(imb) | 56.66±0.12 | 51.17 ± 0.06 | 25.31 ± 0.21 | 45.65 ± 0.23 | | | | MiSLAS+LNR | 56.26±0.24 | 51.46 ± 0.22 | 35.34 ± 0.21 | 48.52 ± 0.12 | | | - 99% of samples from minority classes are removed with the imbalance ratio = 100. - 94 label noises delivers effective trade-off between the classification performance of the head class (yellow) and the tail class (green). | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---|-----|-----|----|-----|----|-----|----|-----|-----|------| | 0 | -26 | +2 | -4 | 0 | +1 | -2 | 0 | -1 | +13 | +16 | | 1 | 1 | -4 | 0 | -1 | +1 | 0 | 0 | 0 | 0 | +4 | | 2 | 5 | +1 | -4 | -2 | 0 | -7 | +1 | +3 | -1 | +3 | | 3 | -2 | -1 | +3 | +18 | -4 | -13 | -5 | +2 | 0 | +5 | | 4 | 0 | 0 | -2 | -3 | +3 | -5 | 0 | +5 | +1 | +1 | | 5 | 2 | 0 | -1 | -3 | 0 | -1 | +1 | +2 | 0 | +2 | | 6 | 1 | +2 | -2 | +6 | -1 | -5 | -4 | +2 | -1 | +1 | | 7 | -5 | 0 | +3 | -20 | -1 | -8 | +4 | +22 | +1 | +5 | | 8 | -91 | -6 | +2 | -2 | -1 | -1 | -2 | 0 | +80 | +20 | | 9 | -42 | -48 | -3 | -5 | +1 | -2 | -3 | -2 | +3 | +102 | Table 3: Confusion matrix comparison of GCL and LNR. The signed values denote the changes made by LNR. #### Experiment Results — KEEL Binary Classification - 32 KEEL imbalanced datasets (tabular data) with range of imbalance ratios from 1.82 to 49.6. - Compared with matured resampling methods with relative ranking on F1, G-mean, and AUC. - LNR does not involve adding or removing samples, significantly enhancing F1 score and G-mean scores without compromising AUC performance.