Learning Imbalanced Data with Beneficial Label Noise

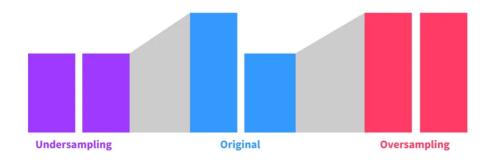
Guangzheng Hu, Feng Liu, Mingming Gong, Guanghui Wang, Liuhua Peng

Fact: Class Imbalance biases the Decision Boundary

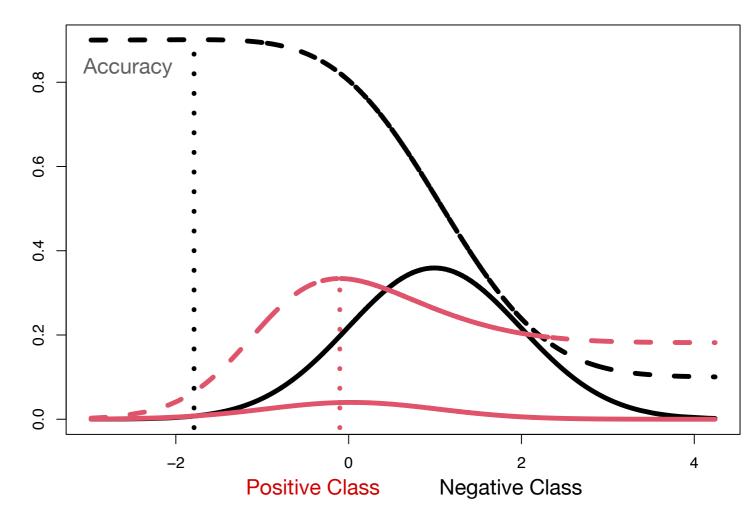
- Fraud transaction detection, Rare disease diagnosis
- Traditional classifier tends to classify all samples into negative class (majority class) while maximizing accuracy on imbalanced data.

$$S^{Acc} = \left\{ x^* \in \mathcal{X} : \frac{P_1(x^*)}{P_0(x^*)} = \frac{\pi_0}{\pi_1} \right\} \qquad S^{F1} = \left\{ x^* \in \mathcal{X} : \frac{P_1(x^*)}{P_0(x^*)} = \frac{\mathcal{F}1(x^*)}{2 - \mathcal{F}1(x^*)} \frac{\pi_0}{\pi_1} \right\}$$

$$S^{\text{Resample}} = \left\{ x^* \in \mathcal{X} : \frac{P_1(x^*)}{P_0(x^*)} = \alpha \frac{\pi_0}{\pi_1} \right\}$$



Information Loss Generative Error



Label-Noise-based Rebalancing Approach

Fact: Label Noise also biases the decision boundaries

$$\rho(x) = Pr(Y^* = 1 \mid X = x, Y = 0) \quad \propto \eta(x)$$

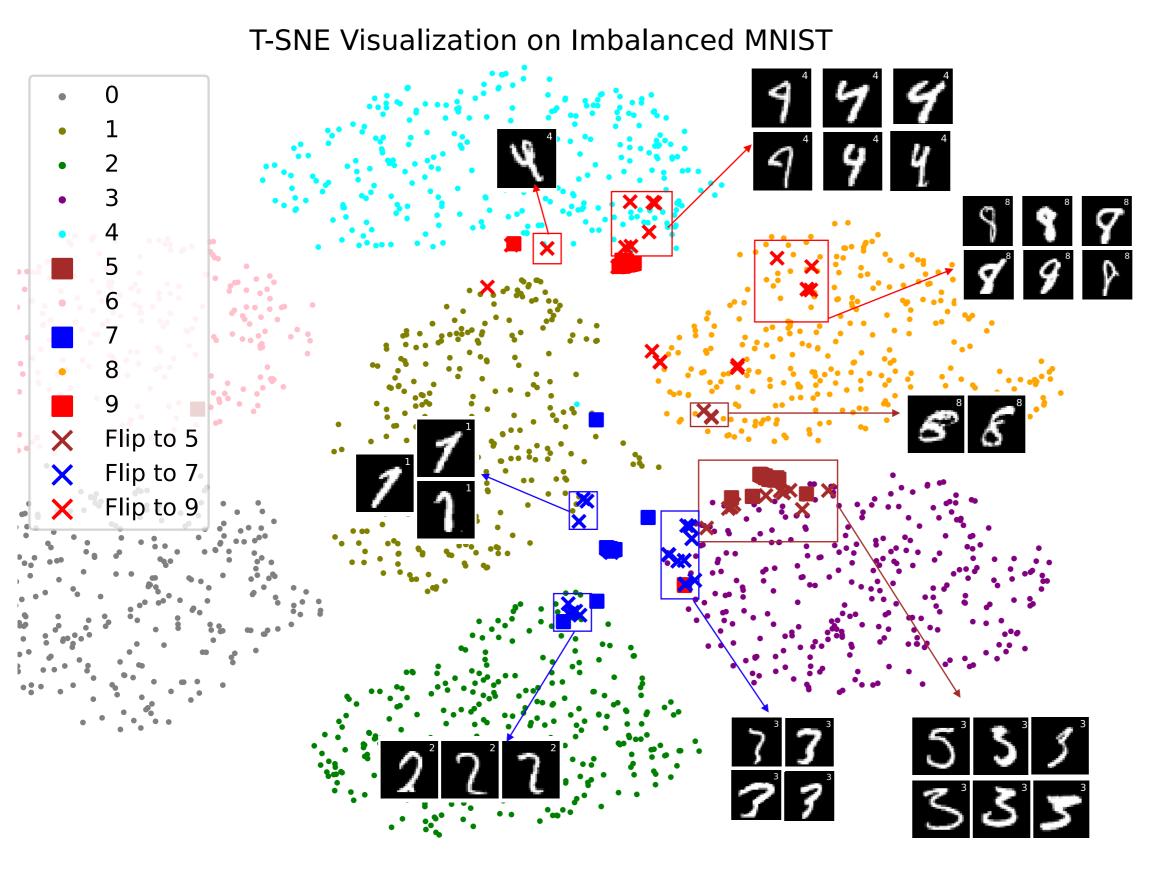
$$S^* = \left\{ x^* \in \mathcal{X} : \frac{P_1(x^*)}{P_0(x^*)} = [1 - 2\rho(x^*)] \frac{\pi_0}{\pi_1} \right\}$$

- Intuition: Only the majority class samples with the most similar features to the minority class are likely to be flipped.
- Advantages: a) Minimum data-editing, b) Model/data-agnostic
- 3-Steps: Z-score Standardlization, tanh Normalization, Label Flipping

$$\mathcal{Z}[i_{\text{majority}}] \leftarrow \frac{\hat{\eta}[i_{\text{majority}}] - \mu}{\sigma}$$

$$\rho[i_{\text{majority}}] \leftarrow max(\text{tanh}(\mathcal{Z}[i_{\text{majority}}] - t_{flip}), 0)$$

$$U \leftarrow \text{Bernoulli}(\rho[i_{\text{majority}}])$$



- Minority classes have only 30 samples: "5", "7", "9". Each majority class has 6000 samples.
- Improves the overall accuracy on balanced test set from 89.93% to 94.75%.
- Flipped samples shares similar features with the minority classes.
- Similar features are occupied by majority.
- Biased decision boundary corrected by only 65 label noises.

Experiment Results — Image Classification

	Step-wise	e Cifar-10	Step-wise Cifar-100		
	$ m Acc_{MI}$	$\mathrm{Acc}_{\mathrm{overall}}$	$ m Acc_{MI}$	$ m Acc_{overall}$	
LDAM	66.41±0.2	77.47 ± 0.06	19.80±0.02	45.23±0.03	
LDAM+RSG	67.02 ± 0.07	77.74 ± 0.08	21.67 ± 0.04	45.51 ± 0.02	
LDAM+LNR	75.06±0.09	78.12 ± 0.03	25.84±0.06	45.63 ± 0.02	
GCL	56.78 ± 0.08	74.80 ± 0.04	5.48 ± 0.03	43.87±0.07	
GCL+LNR	72.22 \pm 0.05	$80.8 {\pm} 0.02$	26.48±0.03	46.20 ± 0.03	

	Long-tailed Cifar-10					
	Many-shot	Medium-shot	Few-shot	Overall		
LDAM	82.62±0.06	76.12±0.1	75.01±0.1	78.39 ± 0.03		
LDAM+RSG	81.56±0.15	77.03 \pm 0.1	77.30 ± 0.1	78.93 ± 0.02		
LDAM+LNR	81.17±0.08	76.42 ± 0.01	79.83 ± 0.1	79.34 \pm 0.01		
GCL	88.60±0.04	79.57 ± 0.01	70.08 ± 0.2	80.55 ± 0.03		
GCL+LNR	88.20±0.04	79.50 ± 0.07	77.60 ± 0.2	82.41 ± 0.03		
MiSLAS	91.00±0.14	80.17 ± 0.22	75.72 ± 0.19	82.10 ± 0.12		
MiSLAS+ReMix	90.04 ± 0.20	79.82 ± 0.16	79.78 ± 0.20	82.92 ± 0.10		
MiSLAS+SelMix(10k)	86.81 ± 0.22	80.50 ± 0.17	83.52 ± 0.21	83.29 ± 0.07		
MiSLAS+SelMix(1k)	81.61 ± 0.14	79.89 ± 0.13	87.60 ± 0.20	82.72 ± 0.22		
MiSLAS+SelMix(imb)	82.21 ± 0.13	81.44 ± 0.11	81.9 ± 0.21	81.8 ± 0.09		
MiSLAS+LNR	84.62±0.22	80.90 ± 0.22	86.07 ± 0.19	83.56 ± 0.08		
	Long-tailed Cifar-100					
	Many-shot	Medium-shot	Few-shot	Overall		
LDAM	62.21±0.05	43.28 ± 0.08	20.83 ± 0.03	42.98 ± 0.03		
LDAM+RSG	60.46 ± 0.05	43.88 ± 0.1	22.57 ± 0.09	43.08 ± 0.07		
LDAM+LNR	61.04 ± 0.03	43.36 ± 0.02	24.11 ± 0.04	43.58 ± 0.02		
GCL	67.16±0.03	46.63 ± 0.06	13.57 ± 0.06	43.90 ± 0.03		
GCL+LNR	57.11±0.07	51.38 ± 0.07	25.02 ± 0.09	45.48 ± 0.05		
MiSLAS	62.05±0.09	48.42 ± 0.11	26.07 ± 0.12	46.85 ± 0.09		
MiSLAS+ReMix	59.06±0.21	49.22 ± 0.09	27.93 ± 0.10	46.59 ± 0.15		
MiSLAS+SelMix(10k)	60.93 ± 0.12	52.06 ± 0.17	25.10 ± 0.13	47.43 ± 0.10		
MiSLAS+SelMix(1k)	61.27±0.08	50.82 ± 0.18	21.34 ± 0.12	46.04 ± 0.11		
MiSLAS+SelMix(imb)	56.66±0.12	51.17 ± 0.06	25.31 ± 0.21	45.65 ± 0.23		
MiSLAS+LNR	56.26±0.24	51.46 ± 0.22	35.34 ± 0.21	48.52 ± 0.12		

- 99% of samples from minority classes are removed with the imbalance ratio = 100.
- 94 label noises delivers effective trade-off between the classification performance of the head class (yellow) and the tail class (green).

	0	1	2	3	4	5	6	7	8	9
0	-26	+2	-4	0	+1	-2	0	-1	+13	+16
1	1	-4	0	-1	+1	0	0	0	0	+4
2	5	+1	-4	-2	0	-7	+1	+3	-1	+3
3	-2	-1	+3	+18	-4	-13	-5	+2	0	+5
4	0	0	-2	-3	+3	-5	0	+5	+1	+1
5	2	0	-1	-3	0	-1	+1	+2	0	+2
6	1	+2	-2	+6	-1	-5	-4	+2	-1	+1
7	-5	0	+3	-20	-1	-8	+4	+22	+1	+5
8	-91	-6	+2	-2	-1	-1	-2	0	+80	+20
9	-42	-48	-3	-5	+1	-2	-3	-2	+3	+102

Table 3: Confusion matrix comparison of GCL and LNR. The signed values denote the changes made by LNR.

Experiment Results — KEEL Binary Classification

- 32 KEEL imbalanced datasets (tabular data) with range of imbalance ratios from 1.82 to 49.6.
- Compared with matured resampling methods with relative ranking on F1, G-mean, and AUC.
- LNR does not involve adding or removing samples, significantly enhancing F1 score and G-mean scores without compromising AUC performance.

