David and Goliath: Small One-step Model Beats Large Diffusion with Score Post-training

Weijian Luo* 1 Colin Zhang 1 Debing Zhang 1 Zhengyang Geng 2

Input: prompt dataset C, generator $g_{\theta}(x_0|z,c)$, prior distribution p_z , reward model r(x,c), reward model scale α_{rew} , CFG reward scale α_{cfg} , reference diffusion model $s_{ref}(x_t|c,c)$, assistant diffusion $s_{\psi}(x_t|t,c)$, forward diffusion $p(x_t|x_0)$ (2.1), assistant diffusion updates rounds K_{TA} , time distribution $\pi(t)$, diffusion model weighting $\lambda(t)$, generator IKL loss weighting w(t),

freeze θ , update ψ for K_{TA} rounds by

while not converge do

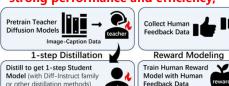
- 1. sample prompt $c \sim C$; sample time $t \sim \pi(t)$; sample $z \sim p_z(z)$;
- 2. generate fake data: $x_0 = sg[g_\theta(z, c)]$; sample noisy data: $x_t \sim p_t(x_t|x_0)$;
- 3. update ψ by minimizing loss: $\mathcal{L}(\psi) = \lambda(t) \| \mathbf{s}_{\psi}(\mathbf{x}_t | t, \mathbf{c}) \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t | \mathbf{x}_0) \|_2^2$;

freeze ψ , update θ using SGD:

- 1. sample prompt $c \sim C$; sample time $t \sim \pi(t)$; sample $z \sim p_z(z)$;
- 2. generate fake data: $x_0 = g_\theta(z, c)$; sample noisy data: $x_t \sim p_t(x_t|x_0)$;
- 3. explicit reward: $\mathcal{L}_{rew}(\theta) = -\alpha_{rew} r(\boldsymbol{x}_0, \boldsymbol{c});$
- 4. CFG reward: $\mathcal{L}_{cfg}(\theta) = \alpha_{cfg} \cdot w(t) \{ s_{ref}(sg[x_t]|t, c) s_{ref}(sg[x_t]|t, \emptyset) \}^T x_t;$
- 5. score-regularization: $\mathcal{L}_{reg}(\theta) = -w(t) \{ \mathbf{d}'(\mathbf{s}_{\psi}(\mathbf{x}_t|t, \mathbf{c}) \mathbf{s}_{ref}(\mathbf{x}_t|t, \mathbf{c})) \}^T \{ \mathbf{s}_{\psi}(\mathbf{x}_t|t, \mathbf{c}) \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t|\mathbf{x}_0) \};$
- 6. update θ by minimizing DI* loss: $\mathcal{L}_{DI*}(\theta) = \mathcal{L}_{rew}(\theta) + \mathcal{L}_{cfg}(\theta) + \mathcal{L}_{reg}(\theta)$;

One-step Diffusion Model?

Since the pioneering work of **Diff-Instruct**, **one-step** generative models map latent noises directly to data samples in a single forward pass; making them preferred with very strong performance and efficiency;



Stage 1: Pre-training Stage 2: Reward Modeling



Stage 3: Post-training (Preference Alignment)

The life of a one-step diffusion model.

Problem formulation:

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{x}_0 \sim p_{\theta}(\boldsymbol{x}_0 \mid \boldsymbol{c})} \left\{ \left[-\alpha r(\boldsymbol{x}_0, \boldsymbol{c}) \right] + \boldsymbol{D}(p_{\theta}, p_{ref}) \right\}$$
(3.1)
$$\mathcal{L}_{Orig}(\theta) = \mathbb{E}_{\substack{\boldsymbol{x} \sim p_z, \\ \boldsymbol{x}_0 = g_{\theta}(\boldsymbol{z}, \boldsymbol{c})}} \left[-\alpha r(\boldsymbol{x}_0, \boldsymbol{c}) \right] + \mathbf{D}^{[0, T]}(p_{\theta}, p_{ref})$$
(3.3)

If we take the Score-based divergence as the proximal regularization: $\mathbf{D}^{[0,T]}(p_{\theta}, p_{ref}) := \int w(t) \mathbb{E}_{\pi_t} \mathbf{d}(\mathbf{s}_{p_{\theta,t}} - \mathbf{s}_{q_t}) dt.$ (3.2)

We can practically minimize the learning objective with:

$$\mathcal{L}_{DI*}(\theta) = \mathbb{E}_{\substack{\boldsymbol{x} \sim p_z, \\ \boldsymbol{x}_0 = g_{\theta}(\boldsymbol{z})}} \left[-\alpha r(\boldsymbol{x}_0, \boldsymbol{c}) \right]$$

$$+ \int_{t=0}^{T} w(t) \mathbb{E}_{\substack{\boldsymbol{x}_t \mid \boldsymbol{x}_0 \\ \sim p_t(\boldsymbol{x}_t \mid \boldsymbol{x}_0)}} \left\{ -\mathbf{d}'(\boldsymbol{y}_t) \right\}^{T}$$

$$\left\{ \boldsymbol{s}_{p_{\text{Sg}}[\theta], t}(\boldsymbol{x}_t) - \nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t \mid \boldsymbol{x}_0) \right\} dt .$$
(3.4)

with
$$oldsymbol{y}_t\coloneqq oldsymbol{s}_{p_{sor}[oldsymbol{ heta}]_t}(oldsymbol{x}_t)-oldsymbol{s}_{q_t}(oldsymbol{x}_t).$$

The key theorem shows the equivalence of DI* loss and general score-divergence (refer to Score Implicit Matching):

Theorem 3.1. Under mild assumptions, if we take the sampling distribution in (3.2) as $\pi_t = p_{sg[\theta],t}$, then the gradient of (3.3) w.r.t θ is the same as (3.4):

$$\frac{\partial}{\partial \theta} \mathcal{L}_{Orig}(\theta) = \frac{\partial}{\partial \theta} \mathcal{L}_{DI*}(\theta).$$

Table 3: Quantitative evaluations of models on HPSv2.1 scores. We compare open-sourced models regardless of their base model and architecture. † indicates our implementation.

MODEL	Animation [†]	CONCEPT-ART↑	PAINTING [†]	Рното↑	AVERAGE†
50STEP-SDXL-BASE(PODELL ET AL., 2023)	30.85	29.30	28.98	27.05	29.05
50STEP-SDXL-DPO(WALLACE ET AL., 2024)	32.01	30.75	30.70	28.24	30.42
28STEP-SD3.5-LARGE	31.89	30.19	30.39	28.01	30.12
50STEP-FLUX-DEV	32.09	30.44	31.17	29.09	30.70
1STEP-DMD2-SDXL(YIN ET AL., 2024)	29.72	27.96	27.64	26.55	27.97
1STEP-DIFF-INSTRUCT-SDXL(LUO ET AL., 2024B)	31.15	29.71	29.72	28.20	29.70
1STEP-SIM-SDXL(LUO ET AL., 2024C)	31.97	30.46	30.13	28.08	30.16
1STEP-DI++-SDXL(Luo, 2024)	31.19	29.88	29.61	28.21	29.72
1STEP-DI*-SDXL(OURS)	32.26	30.57	30.10	27.95	30.22
1STEP-DI*-SDXL(OURS, LONGER TRAINING)	33.22	31.67	31.25	28.62	31.19
1STEP-DI*-SDXL-DDPO(OURS, LONGER TRAINING)	33.92	32.80	32.71	29.62	32.26

