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Scaling computing from 
training-time to test-time

Ø LLAMA-3.1-70B-DPO: 
72,840 PFLOPs

Ø LLAMA-3.1-70B-TPO: 
9.3 PFLOPs (0.013%)

TPO progressively 
improves alignment 
over test-time steps:

 - both unaligned and 
aligned models

 - across different re-
ward models
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Sequential Revision
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Aligning Preferences during Inference

Test-time Reinforcement Learning via Textual Feedback

0 1 2 3 4 5
Number of Test-time Training Steps

-0.6

-0.4

-0.2

0.0

0.2

-0.4

0.6

R
ew

a
rd

M
o
d
el

S
co

re
(F

sf
a
ir

X
-L

L
a
M

A
3
-R

M
-v

0
.1

)
Llama-3.1-70B-Instruct

Mistral-Small-Instruct-2409

Llama-3.1-8B-Instruct

yafuly

yafuly/TPO
yafuly@gmail

Contact & Code

Test-time Scaling: Combining Parallel Sampling with Sequential Revision

TPO on the unaligned model (after SFT without training-time alignment).

TPO on the aligned models (after training-time alignment).

Current preference optimization (RLHF, DPO) occurs during training.
Ø Requires costly retraining for new domains, regulations, or

preferences.
Ø Once deployed, models are static and cannot adapt to evolving user

needs.
Goal:
Enable preference alignment at inference time, with minimal compute
and no parameter updates.

log 𝑝𝜽 𝑦|𝑥;𝝋
Parameters Context

Ø DPO/RLHF: update	𝜽

Ø TPO: update 𝝋

Initialization: policy model ℳ , reward model ℛ, user query 𝑥
    - Sample N candidate responses 𝑣!, 𝑣", … , 𝑣# ← ℳ(𝑥)
    - Score with reward model ℛ; store (𝑣$ , ℛ(𝑣$)) in cache ℂ

Iterate for t=1…D
    - Select the best and worst responses from ℂ
    - ℳ:	Generate textual loss comparing ”best” and “worst” 
    - ℳ : Generate textual gradient (𝝋) suggesting how to 
improve “best” further.
    - ℳ : Update responses; score with ℛ and add to cache ℂ

Output Return highest-scoring response in ℂ

On the unaligned 
model, TPO (D5-N20) 
outperforms DPO 
and Instruct (e.g., 
77.5% WR on Arena-
Hard, 71.8 on MATH-
500).

On aligned models, 
TPO further boosts 
performance with 
minimal extra com-
pute.

Unaligned models benefit from more iterative refinement 
as better responses emerge from later TPO steps.

TPO-D2-N5 beats BoN-30/60 with less samples
showing the efficiency of iterative revision.

TPO requires instruction-
following ability, as models 
must accurately interpret 
and act on textual feedback 
to align effectively.
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