

Sortformer: A Novel Approach for Permutation-Resolved Speaker Supervision in Speech-to-Text Systems

Taejin Park
Ivan Medennikov
Kunal Dhawan
Weiqing Wang
He Huang
Nithin Rao Koluguri
Krishna C. Puvvada
Jagadeesh Balam
Boris Ginsburg

NVIDIA, Santa Clara, CA, USA

Sortformer's Mission

Power ASR models and LLMs with Speaker Information

Standalone **End-to-end Diarization**

ASR Speaker Tagging Prediction (= Speaker Diarization)

Sortformer

Transformer Encoder

ASR AED, RNNT, CTC Streaming and longform speaker context support

LLM SpeechLLM Voice Agent

Train Multispeaker ASR Just Like Normal ASR

Resolve Permutation with Sorting.

Sortformer: bridging between timestamps and tokens

We want to handle inference and training with token labels.

A bridge between timestamps and Tokens!

Timestamps to Tokens?

Word Alignments - Done by RNNT, CTC and Transformer AED Speaker Permutations - Done by Sortformer

Sortformer End-to-End Diarizer Models Permutation can be also resolved by Sorting!

Sortformer Overview

Sortformer's Speaker Diarization: Who spoke When + and who spoke first?

Sortformer End-to-End Diarizer Models Permutation can be also resolved by Sorting!

Sortformer Overview

Sortformer's Speaker Diarization: Who spoke When + and who spoke first?

Sortformer End-to-End Diarizer Models

Sortformer Overview

Sortformer Diarizer

- Hybrid Loss
 - We use both Sort-Loss and permutation invariant loss.
 - Still the model output is sorted
- Based on NEST SSL based pretrained Encoder
 - Fast-Conformer Encoder
- Very simple architecture (Encoder-only)
 - No encoder-decoderno attractors (unlike EEND-EDAAED-EEND)
 - Not an autoregressive wayone-pass Transformer-based encoding
- To be used as: Either Stand-alone or Diarization Encoder with ASR
 - Designed to provide "speaker encoding" to ASR/speechLM models

Sortformer is an Encoder Type Model

Speaker Encoding with Differentiable Kernel Functions

- Speaker Kernels for adding speaker information into encoder states:
 - Inspired by positional encoding but conveying speaker information.
 - Differentiable functions and can propagate gradient to diarization module.

Sortformer is an Encoder Type Model

Benefits of Sortformer

Sorted Speaker Tokens

1. Why not one Transformer? Why multiple sub-models?

- a. Data Scarcity
- b. Long Context Problem in Diarization.
- c. **Streaming and Long-form inference** of speaker information

2. Make multi-speaker ASR + diarization Easy

- a. Train the whole system only using token objectives (i.e.ASR/LLM training objective).
 - i. No need for timestamp annotation
 - ii. No need for considering permutation-invariant loss
- b. One model performs diarization + ASR (Multi-speaker ASR)
 - i. Easier domain optimization than cascaded systems
 - ii. Easy to deploy

Sortformer End-to-End Diarizer Models

Experimental Results

• Sortformer Speaker Diarization

Diarization Systems	Post Processing	$\begin{array}{c c} \textbf{DIHARD3} \\ n_{\text{Spk}} \leq 4, \\ 0.0 \text{ s} \end{array}$	$\begin{array}{c c} \textbf{CAL} \\ n_{\text{Spk}} = 2, \\ 0.25 \text{ s} \end{array}$	LHOME- $n_{\rm Spk}$ =3, 0.25 s	part2 n _{Spk} =4, 0.25 s	CH109 n _{Spk} =2, 0.25 s
(Park et al., 2022) †MSDD	-	29.40	11.41	16.45	19.49	8.24
(Horiguchi et al., 2022a;b) EEND-EDA (Chen et al., 2022) †WavLM-L+EEND-VC	-	15.55	7.83 6.46	12.29 10.69	17.59 11.84	-
(Horiguchi et al., 2022b) †EEND-GLA-Large	-	13.64	7.11	11.88	14.37	-
(Chen et al., 2024) AED-EEND	-	-	6.18	11.51	18.44	-
(Chen et al., 2024) AED-EEND-EE		-	6.93	11.92	17.12	-
Sortformer-PIL	×	18.33 17.04	7.28 6.94	11.57 10.30	18.80 17.52	5.66 6.89
Sortformer-Sort-Loss	×	17.88 17.10	7.42 6.52	12.68 10.36	19.42 17.40	9.08 10.85
Sortformer-Hybrid-Loss	×	16.28 14.76	6.49 5.87	10.01 8.46	14.14 12.59	6.27 6.86

Sortformer End-to-End Diarizer Models

Experimental Results

• Multi-speaker Canary: Multi-speaker ASR with Canary supervised by Sortformer Diarizer (Ablation Study)

System Index	Obj. Level	Model Param. Size	Train Speaker Supervision	Infer Speaker Supervision	Diar. Model Fine-tune	Adapter Dim.	AMI-test WER	ce (≤ 4-spks) cpWER	CH109 WER	(2-spks) cpWER
baseline	-	170M	-	-	-	-	26.93%		21.81%	-
1	word	170M	-	-9	d -	- 1	19.67%	32.94%	18.57%	24.80%
2	word	293M	Sortformer	Sortformer	×	-:	20.08%	28.17%	18.65%	22.22%
3	word	293M	Sortformer	Sortformer	/	:	19.47%	32.74%	19.53%	26.97%
4	word	293M	Ground Truth	Sortformer	-	-	19.48%	26.83%	18.74%	24.39%
5	segment	1.12B	Sortformer	Sortformer	Х	256	18.58%	28.59%	17.74%	22.19%
6	word	1.12B	Sortformer	Sortformer	×	256	18.04%	26.71%	16.46%	21.45%

- Multi-speaker Canary: Overlapped Speech Evaluations
 - LibriSpeechMix: 0.5~10 sec of overlaps, up to 3 speakers

	Param. Size	Spk.	WER			
ASR Systems		Spv.	1mix	2mix	3mix	
Canary ASR	170M	Х	2.19	21.37	48.71	
(Puvvada et al., 2024)	1B	X	1.65	20.49	47.32	
SOT-ASR (Kanda et al., 2020b)	135.6M	Х	4.6	11.2	24.0	
SOT-ASR-SQR (Kanda et al., 2020a)	135.6M	×	4.2	8.7	20.2	
DOM-SOT (Shi et al., 2024)	33M	X	5.17	5.56†	9.96†	
MT-LLM (Meng et al., 2025)	8.4B	1	2.3	5.2	10.2	
MS-Canary	170M	X	2.74	6.55	12.14	
Sortformer-MS-Canary	293M	√	2.26	4.61	9.05	

11

Sortformer is an Open-Source Model

[Link] Hugging Face: diar_sortformer_4spk_v1

NVIDIA NeMo Toolkit

Sortformer: A Novel Approach for Permutation-Resolved Speaker Supervision in Speech-to-Text Systems

Thank you for your Attention!