

Teaching Physical Awareness to LLMs through Sounds

Weiguo Wang (NIO), Andy Nie (NIO, Peking University), Wenrui Zhou (NIO), Yi Kai (NIO), Chengchen Hu (NIO)

1. How Human Ears Understand Physical World?

Doppler Effect Identifies whether a

car is approaching

Multipath Effect Distinguishes indoor from

Binaural Hearing

Enables localization of sound sources

Sounds inherently carries rich physical information

outdoor environments

2. Can Audio LLM Hears like Human Ears?

While Audio LLMs perform well on speech content, they lack physical understanding

3. Why We Need Physical Understanding?

Voice-controlled Vehicle

vehicle

Embodied AI Systems

Uses sound localization to make systems more human-like

Siren Detection and Localization

Prevents "deaf driver" behavior, enhancing safety and awareness

4. Model Architecture Audio + Text Follow the voice command from the input audio **Prompt** Text 1.Audio Encoder: Converts Encoder raw audio into tokens 2.Text Encoder: Converts text Concatenated **Text Tokens Audio Tokens** input into tokens **Tokens** . LLM: Generates responses based on combined input Large Language Model **Text Response** awareness> No LOS detected, sound source is blocked. Rejecting command as it's outside the car. </physical-awareness: Command rejected. Please give commands from inside the vehicle. Following common practices, we adopt a common end-to-end architecture

5. Challenge I: Dataset Construction

How to collect and annotate a large-scale dataset?

- Data Collection? This requires extensive deployment of recording devices across various environments and conditions, which is expensive and not scalable
- Data Annotation? Unlike text or images where humans can directly annotate content, audio physical cues cannot be labeled easily by humans.

Key Insight: The sound that we hear or microphones capture can be decomposed into two independent components:

$$y = h * x$$

- x the sound source
- h the physical channel through which it travels

Solution: Synthesize audios by convolving real sounds with simulated channels

We generate SFT data by convolving existing

Using known simulation parameters, we

Each datapoint is a < Audio, Question,

Answer> triplet, enabling grounded physical

automatically create aligned QA pairs.

sounds with simulated channels.

understanding.

simulator, which models the full life cycle of sound — from emission to reception.

We develop a acoustic channel

Synthesis Workflow of <Audio, Question, Answer>

6. Challenge II: Fine-grained Feature Extraction

Audio Encoder (OpenAI Whisper)

Problem: Audio encoders like Whisper fall short for physical understanding. Whisper mainly captures magnitude features, which work well for speech recognition—but lack the finegrained phase information needed for physical cues

Solution: Our encoder incorporates both magnitude and phase (sin, cos) to retain physical characteristics of sound.

7. Main Results

Table 2. Overall Performance. Values are presented as (Merged | Sole) where "Merged" indicates models trained on combined dataset and "Sole" indicates models trained separately for each task. By default, we focus on Merged results, with Sole results provided for reference.

Model Architecture		Task Performances (Merged Sole)				
Audio Encoder	LLM	LOS Detection BCA (†)	Doppler Estimation $MAE_f(\downarrow)$	DoA Estimation $MAE_t (\downarrow)$	Multipath Analysis TCA (†)	Range Estimation REP (\downarrow)
Whisper	Llama3.1-8B	0.867 0.906	1.213 3.147	5.585 5.601	0.845 0.889	12.572 17.182
	Qwen2-7B	0.881 0.910	1.042 0.575	2.716 6.873	0.848 0.897	10.609 12.901
ACORN	Llama3.1-8B	0.920 0.965	0.791 0.557	1.423 1.349	0.890 0.945	1.764 1.446
	Qwen2-7B	0.924 0.962	0.181 0.263	0.907 1.167	0.903 0.944	1.599 1.751
Performance on Open QA (Our Encoder + Qwen2-7B)		0.898 0.953	0.487 0.398	2.314 2.043*	0.906 0.908	2.852 1.900*
Random Baseline**		0.50	10.00	66.67	0.33	33.33

We compare two audio encoders: OpenAI's Whisper and our encoder proposed. We pair each encoder with two different large language models (LLMs): Llama3-8B and Qwen2 with 7B

Key Findings:

- 1. the feasibility of teaching LLMs to understand physical phenomena through sound
- 2. the superiority of our audio encoder over Whisper
- 3. the model-agnostic nature of our approach, evidenced by similar performance of different LLM architectures

(a) Qwen2-7B

(b) Llama3.1-8B **Loss History**

• Our approach achieves **faster convergence** and **lower final loss values** during training across both Llama and Qwen architectures

(e) Speaker at front seat

Real-World Deployment

Results

The results show the **practical viability** of our approach in the real world.

Contact Me:

Homepage

WeChat