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1. How Human Ears Understand Physical World ? 5. Challenge I: Dataset Construction 7. Main Results
How to collect and annotate a large-scale dataset ? Table 2. Overall Performance. Values are presented as (Merged | Sole) where “Merged” indicates models trained on combined dataset and
L \QL . Data Collection ? This re quires extensive d epl oyment of recordin g devices across various “Sole” indicates models trained separately for each task. By default, we focus on Merged results, with Sole results provided for reference.
RGT It 1 , environments and conditions, which is expensive and not scalable Model Architecture Task Performances (Merged | Sole)
&_ \\\5’ H . . . . . . . . . . . . . . .
' e I « Data Annotation ? Unlike text or images where humans can directly annotate content, audio Audio LLM LOS Detection  Doppler Estimation  DoA Estimation  Multipath Analysis ~ Range Estimation
‘ | ) : Encoder BCA (1) MAE; ({) MAE; ({) TCA (1) REP ()
physical cues cannot be labeled easily by humans.
Doppler Effect Multipath Effect Binaural Hearing Whi Llama3.1-8B 0.867 | 0.906 1.213 | 3.147 5.585|5.601 0.845 | 0.889 12.572 | 17.182
sper
Ider}tifies whether a Distinguishe.s indoor from Enables localization ot Key Insight: The sound that we hear or microphones capture can be decomposed into two Qwen2-78 0.88110.510 1.04210.575 2.716]6.873 0.84810.897 10.609 | 12.901
car is approaching outdoor environments sound sources independent components: ACORN Llama3.1-8B 0.920 | 0.965 0.791 | 0.557 1.423 | 1.349 0.890 | 0.945 1.764 | 1.446
y=hx*x Qwen2-7B 0.924|0.962  0.181]0.263 0.907 | 1.167 0.903 | 0.944 1.599 | 1.751
Sounds inherently carries rich physical information * x the sound source (gﬁf(ﬁﬁiﬁ: inQ?g;nz%%) 0.8980.953  0.487 | 0.398 2.314]2.043*  0.906 | 0.908 2.852 | 1.900*
* h the physical channel through which it travels
Random Baseline™™ 0.50 10.00 66.67 0.33 33.33
2. Can Audio LILM Hears like Human Ears? Solution: Synthesize audios by convolving real sounds with simulated channels
We compare two audio encoders: OpenAI’s Whisper and our encoder proposed. We pair each encoder
r r r : with two different large language models (LLMs): Llama3- 8 B and Qwen2 with 7B
(] Line-of-Sight ] oy ] ReverberationT We develop a acoustic channel o 5 SHds ( ) 3 Q /
O [ Sound ]_’ ) ) > _{ Synthosized ] simulator, which models the full life Key Findings:
Source Doppler Effect ||| Microphone Bf Audio cycle of sound — from emission to 1. the feasibility of teaching LLMs to understand physical phenomena through sound
PP Array y p y p g
\‘ ; ; P reception. 2. the superiority of our audio encoder over Whisper
While Audio LLMs perform well on speech content, Acoustic Channel Simulator 3. the model-agnostic nature of our approach, evidenced by similar performance of different LLM
they lack physical understanding e o | N architectures
« We generate SFT data by convolving existing e oo ommRER AT 1 1
sounds with simulated channels. Conctlion ________ s$§§:n ________ | e | _®j{ Audio® ] [Agl:ir] i 10" Ours-Train 10 - Ours-Train
o d ° 1 ; 1 3 < LT_LL; Convolution : lfbfer (A : ] Ours-Val Ours-Val
3. Why We Need Physical Understanding? Using known simulation parameters, we 7 e e e r= , Whisper-Train , Whisper-Train
automatically create aligned QA pairs. § Question- s % . % .
: . . . TR Rl D R Q 100 ] ——  Whisper-Val Q 100 ] ——  Whisper-Val
| « Each datapoint is a <Audio, Question, = | — | N—
Open the Window Answer> triplet, enabling grounded physical Synthesis Workflow of
understanding. <Audio, Question, Answer> 10 'L | | | 10 'L | | |
¢ ﬂ 0 10000 20000 30000 0 10000 20000 30000
Step Step
“ o o o
v 6. Challenge 11: Fine-grained Feature Extraction
\ a p—— N (a) Qwen2-7B (b) Llama3.1-8B
A Loss History
Voice-controlled Vehicle Embodied AI Systems Siren Detection and [ Z, Trans. ]—» [][]===[] . . o
Localization Z * Our approach achieves faster convergence and lower final loss values during training
|~ across both Llama and Qwen architectures
Blocks unauthorized voice Uses sound localization to Prevents “deaf driver” Spectrum c Position . Audio
. . . (magnitude) onv Embedding ranstormer Tokens
commands from outside the = make systems more behavior, enhancing safety 1.0
Problem: Audio encoders like Whisper fall short for physical understanding. Whisper mainly o I I
captures magnitude features, which work well for speech recognition—but lack the fine- 2 0.6
o rained phase information needed for physical cues 5 I I
4. Model Architecture 5 b PHY g04
4(Open the window) I T } S , 0.9 I Llama
b e ) Tt ot o 18 ol
~ 0.0 1 : ——
l . ! . L~ / e N\ N LA N, LOS Detection L/R Detection
\ EAud(llo / \ £ Tex; / l.Allle EIlCOdeI': COIlVeI'tS \ (d) Speaker outside the car (e) Speaker at front seat (f) Speaker at back seat
ncoaer ncoaer o e A Aa
_________________________ raw audio into tokens [ = N g Trans. mum Real-World Deployment Results
Concatenated | - : Y 2. Text Encoder: Converts text < 2 =
Tokens | (<s0a>| | Audio Tokens | [<eoa>] | Text Tokens JI . . I ~ . ] o .
— ==L B Input into tokens |~ Transformep - 0dio Tokens  The results show the practical viability of our approach in the real world.
r 3. LLM: Generates responses N
: : Conv. Position
Large Language Model ] based on combined input . Embedding
| 3 5
Text Response <physical-awareness> No LOS detected, sound source is blocked. Act. Concat. Our Audio EHCOder
with Physical Rejecting command as it's outside the car. </physical-awareness> Phase (cos) Conv.
Awareness Command rejected. Please give commands from inside the vehicle.
Solution: Our encoder incorporates both magnitude and phase (sin, cos) to retain
Following common practices, we adopt a common end-to-end architecture physical characteristics of sound.
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