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The Setting
Imagine you have a test that is an excellent predictor of whether someone will be 
successful at some task.

• Be a good employee

• Safely drive a truck

• Do well in a Machine Learning course
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successful at some task.
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You don’t know  but you have past data.θ*
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So you publish some test cut-off .̂θ
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The Setting
Now suppose people can put in effort to improve (study, practice).

θ*Δ(x)

x

Each person  can improve their score by .x Δ(x)
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How should we set  ?̂θ

QualifiedUnqualified

̂θ



The Setting
• There's a big danger if you put your cutoff too low:

• people may improve to your cutoff and still not be qualified!
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The Setting

θ*
- - - - + + +

• There's a big danger if you put your cutoff too low:
• people may improve to your cutoff and still not be qualified!

• On the other hand, there's a nice benefit of putting your cutoff safely a little too 
high (say at the smallest positive example):

̂θ



The Setting

θ*
- - - - + + +

(a) you never have a false positive (everyone you admit is qualified)
(b) any actual positive can put in effort and pass your test, so no false negatives.

➢ If gap to true  is smaller than ,                                                                 
then we can actually get zero error!

θ* Δ = minx Δ(x)

̂θ

• There's a big danger if you put your cutoff too low:
• people may improve to your cutoff and still not be qualified!

• On the other hand, there's a nice benefit of putting your cutoff safely a little too 
high (say at the smallest positive example):

Note: Usually you can’t get 
zero error from finite data in 

PAC learning!



Formal Model: PAC Learning with Improvements
• Assume target function  from some family  (say linear classifiers). 
• Agent  has region  that it can (or would be willing to) improve to.

f* ℋ
𝑥 Δ(𝑥)

• Assume classifier  is made public.  
➢If  but there is some  such that , then  will move to 

some such point (breaking ties adversarially).

h
h(𝑥) = 0 𝑥′￼∈ Δ(𝑥) h(𝑥′￼) = 1 𝑥

• Contrast this with strategic classification [Hardt et al. 2016], and adversarial 
robustness, where agents move to manipulate their features and deceive the 
classifier.



Some Theoretical Results
• Can have classes of infinite VC-dimension that become easy to learn.

• Can have classes of small VC-dimension that become hard to learn, especially 
with adversarial tie-breaking.

• In general, the theory favors classifiers that only predict positive when they’re sure.

• We get nice sample bounds for achieving zero error whp in several interesting cases.

Negative

Positive



Some Experimental Results
• We choose some features as modifiable up to some distance .Δ = r

• Train some network  on training data.  Then, for each test point, use PGD to 
simulate agent behavior (like in adversarial ML).

h

• Different from adversarial ML: we assume the changes are real.
• We need to know if changing the features actually would have changed the label.   
• Simulate this by training a separate classifier of a different type (a decision tree) 

to zero error on the entire dataset (training & test) and then using that as if it 
were the ground truth.



We evaluate improvement-aware algorithms on three real-world datasets (Adult, 
OULAD, Law School) and one fully-synthetic dataset. 
• The true labeling function  is a zero-error model. 
• The decision-maker classifiers are (modified) neural networks:

• With weighted (vs. standard) binary cross entropy loss functions.
• With risk-averse (vs. standard) thresholding.

f*

Evaluation Setup

We compare classifiers trained with standard loss function with those trained with a 
more risk-averse loss function (higher penalty on false-positives than false negatives)



Improvement-aware algorithms (risk-averse models) perform better as  increases.
•False negatives decrease, while false positives stay zero.

r

𝑤_𝐹𝑃 = 0.001, 𝑤_𝐹𝑁= 4.4

Evaluation Results



Evaluation Results



Thank you!


