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First, some terminologies...

* Place cell: Aneuronin the hippocampus that exhibits place fields

* Placefield: Alocalized region where a place cell robustly fires
with a Gaussian distribution

* Population of place fields: State space representation for
localization (i.e. biological “GPS”)

* Place field dynamics: How individual place field’s spatial
representation changes over time

Key phenomena:

1) High density at rewards (“Reward Over-representation”)
2) Elongation against trajectory (“Predictive Coding”) *

3) Drift with stable behavior (“Representational Drift”) O’Keefe, Burgess 1996 Nature

Question: Why do place fields reorganize during learning?




Navigation task:
Choose actions to move from Start to Target

Foster etal., 2000; Kumar et al., 2022; 2024



Simple HPC-BG agent with tunable place fields
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High place field density emerges at reward and start
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Place fields elongate against the trajectory

Experiment Model
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Sorted by day 1

Noisy fields drift while stable navigation behavior

Experiment Model
Trajectory
Day 1
= 1 T=25000 T=75000 T=125000 T=150000 T=195000 Ooian = 0.0001
>
=3 £ 501
£ 5 J .
05 SN 2 I
gy 2 011 , .
2 ‘ 0 10° 2x10°
0 > T
=
Similarity matrix £3
: 80 a3
Ly
60 g"
40 £
s
20 z
0 L Mean Amplitude
Position

Qin etal. 2023 Nat. Neuro.



Place field representation learning improves
policy convergence and flexibility
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Conclusion

Simple model is biologically grounded to neuroanatomy and computation.

Gaussian basis functions trained using the reward prediction error to maximize rewards.
Model recapitulates three key place field phenomena.

Show place field reorganization improves policy convergence and new target learning.

Model can be used to make testable predictions and improve learning algorithms.
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