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First, some terminologies…

• Place cell: A neuron in the hippocampus that exhibits place fields

• Place field: A localized region where a place cell robustly fires 
with a Gaussian distribution

• Population of place fields: State space representation for 
localization (i.e. biological “GPS”) 

• Place field dynamics: How individual place field’s spatial 
representation changes over time

Key phenomena: 

1) High density at rewards (“Reward Over-representation”) 

2) Elongation against trajectory (“Predictive Coding”)

3) Drift with stable behavior (“Representational Drift”)

Question: Why do place fields reorganize during learning?

O’Keefe, Burgess 1996 Nature



Navigation task: 
Choose actions to move from Start to Target

Foster et al., 2000; Kumar et al., 2022; 2024
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Simple HPC-BG agent with tunable place fields
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High place field density emerges at reward and start

Gauthier et al. 2018 Neuron
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Place fields elongate against the trajectory

Mehta et al. 1997 PNAS
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Noisy fields drift while stable navigation behavior

Qin et al. 2023 Nat. Neuro.
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Place field representation learning improves 
policy convergence and flexibility

Parameter importance: 𝜎 > 𝛼 > 𝜆



Conclusion

• Simple model is biologically grounded to neuroanatomy and computation.

• Gaussian basis functions trained using the reward prediction error to maximize rewards.

• Model recapitulates three key place field phenomena.

• Show place field reorganization improves policy convergence and new target learning.

• Model can be used to make testable predictions and improve learning algorithms.
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