

A Model of Place Field Reorganization **During Reward Maximization**

M Ganesh ("guh-nay-sh") Kumar 42nd International Conference On Machine Learning (ICML)

Blake Bordelon

Jacob Veth-Zavatone

Cengiz Pehlevan

mgkumar138

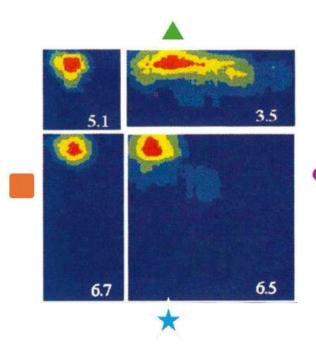
First, some terminologies...

- Place cell: A neuron in the hippocampus that exhibits place fields
- Place field: A localized region where a place cell robustly fires with a Gaussian distribution
- *Population* of place fields: State space representation for localization (i.e. biological "GPS")
- Place field dynamics: How individual place field's spatial representation changes over time

Key phenomena:

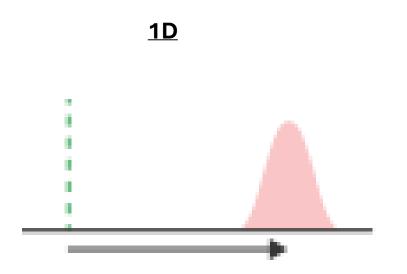
- 1) High density at rewards ("Reward Over-representation")
- Elongation against trajectory ("Predictive Coding")
- Drift with stable behavior ("Representational Drift")

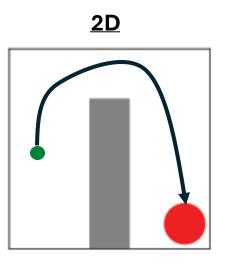
Question: Why do place fields reorganize during learning?



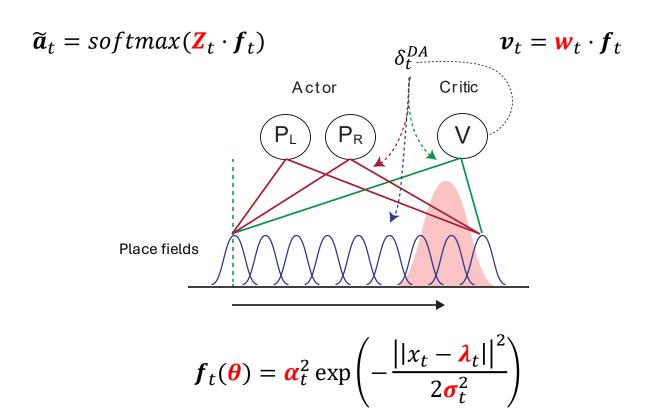
O'Keefe, Burgess 1996 Nature

Navigation task: Choose actions to move from Start to Target





Simple HPC-BG agent with tunable place fields



Temporal Difference error modulated learning

$$\delta_t^{DA} = r_t + \gamma v_{t+1} - v_t$$

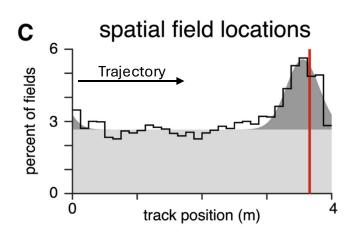
$$\Delta \mathbf{w}_t \propto \mathbf{f}_t \cdot \delta_t^{DA}$$

$$\Delta \mathbf{Z}_t \propto \mathbf{f}_t \cdot \mathbf{a}_t \cdot \delta_t^{DA}$$

$$\Delta \boldsymbol{\theta}_t \propto \boldsymbol{f}_t'(\boldsymbol{\theta}) \cdot (\boldsymbol{w}_t + \boldsymbol{Z}_t \cdot \widehat{\boldsymbol{a}}_t) \cdot \delta_t^{DA}$$

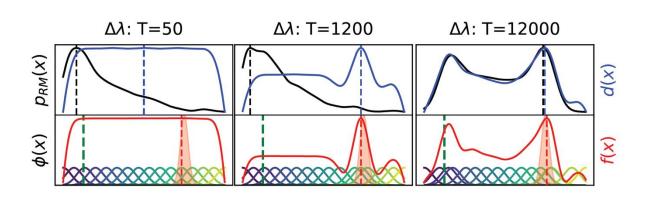
High place field density emerges at reward and start

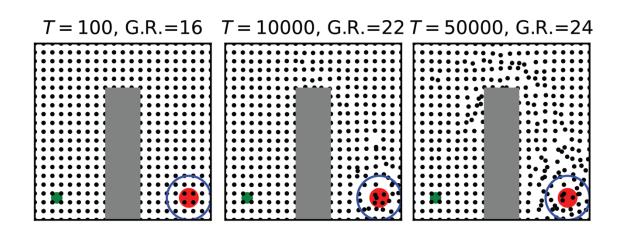
Experiment



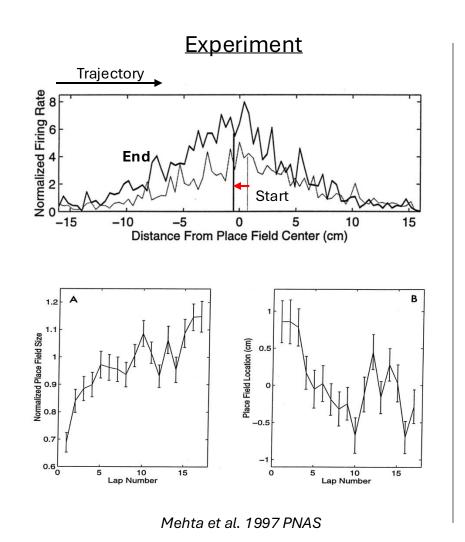
Gauthier et al. 2018 Neuron

<u>Model</u>



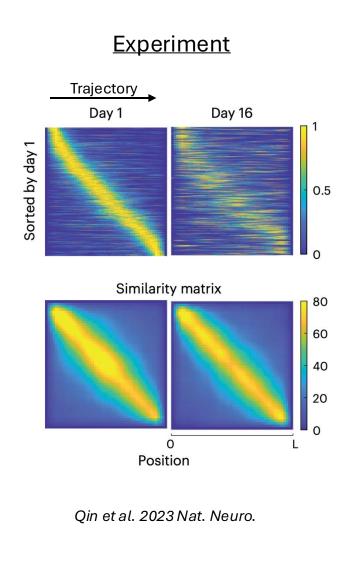


Place fields elongate against the trajectory

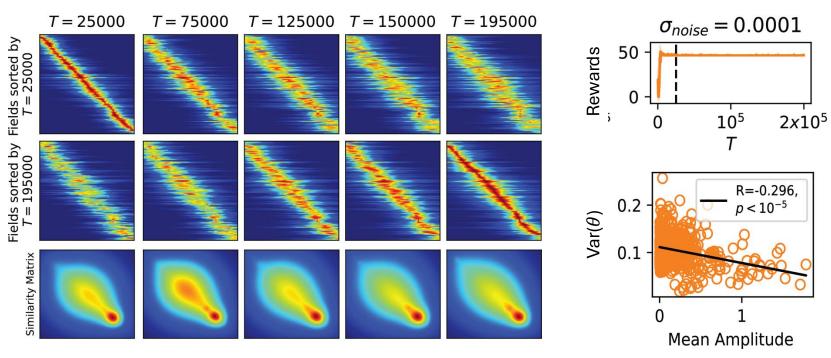


Model T=1000 T=10000 T = 3000T=50000 PRM Norm A size 0.0 Norm A COM <u>~</u>0 10² 10³ 10³ 10³ 10⁴ 10² 10⁴ 10²

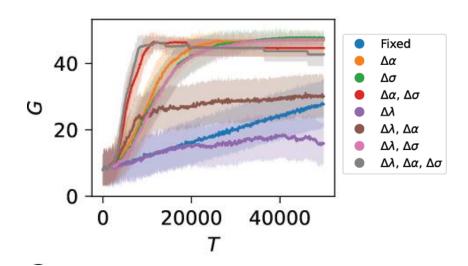
Noisy fields drift while stable navigation behavior

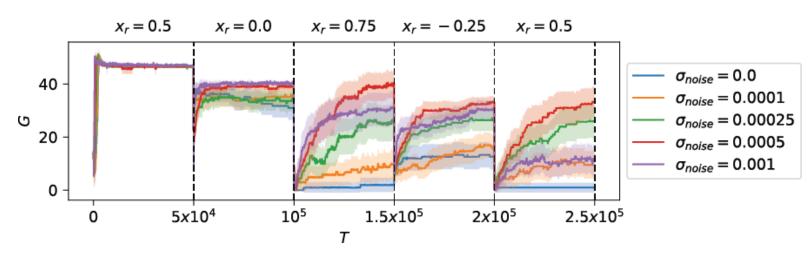


Model



Place field representation learning improves policy convergence and flexibility



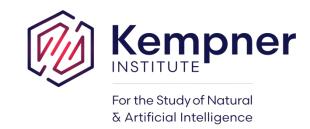


Parameter importance: $\sigma > \alpha > \lambda$

Conclusion

- Simple model is biologically grounded to neuroanatomy and computation.
- Gaussian basis functions trained using the reward prediction error to maximize rewards.
- Model recapitulates three key place field phenomena.
- Show place field reorganization improves policy convergence and new target learning.
- Model can be used to make testable predictions and improve learning algorithms.

Acknowledgements



Cengiz Pehlevan

Blake Bordelon Jacob Zavathone-Veth Benjamin Reuben Adam Lee William Tong

Venkatesh Murthy
Farhad Pashakhanloo

Demba Ba

Gaia Grosso Shubham Choudary Sumedh Hindpur

Lucas Janson
Ben Schiffer
Shahrier Talebi

Funding

Harvard Postdoctoral Fellowship in Computer Science

A*STAR Central Research Fund NUS Graduate School Scholarship A*STAR Undergraduate Scholarship

Summer Programs

Analytical Connectionism Summer School 2024 Kavli Institute for Theoretical Physics: Physics of Intelligence

