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Motivation



Biased Clinical Data Distribution 

Patient Distribution in Prostate Cancer Treated with External Radiotherapy

NCCN (National Comprehensive Cancer Network); Y. Oh et al., In Revision for IEEE TPAMI

𝐓𝐫𝐚𝐢𝐧 𝐬𝐞𝐭 𝐓𝐞𝐬𝐭 𝐬𝐞𝐭

AI Generalization Error Occur



Fairness Learning in Medical AI Performance
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Improved Equity for Medical Image Segmentation Performance

Improved Equity

T1    T2   T3    T4

T-stage

• Medical data is often ill-posed due to:
• Demographics (age, gender, race)
• Clinical variability (disease severity)

• Imbalanced data distribution
during AI training leads to
biased model performance

• Advanced fairness learning strategies:
• FEBS (Y. Tian et al., ICLR 2024)
• FairDiff (Li et al., MICCAI 2024)

   >> Demographic aspect

• Our goal:
   >> Both demographic & clinical aspect
   >> Account for distributional patterns



Motivated by Sparse Gating from Mixture of Expert
• Mixture of Expert (MoE) 
   : leverages sparse gating for computational efficiency in large neural networks

MoE, N. Shazeer et al., ICLR 2017
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• Distribution-aware MoE (dMoE)

𝒉𝒍 dMoE
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Explain MoE from
 

A Control-Theory



Theory



Explain MoE from A Control-Theoretic Perspective

• Neural Residual Network

ResNet-50 for 2D classification

• Forward Euler Scheme of
Ordinary Differential Equation

𝑡
𝑢+

Neural ODE, R. Chen, NeurIPS 2018; LM-Resnet, Y. Lu et al., PMLR 2018

• Non-feedback Control
Neural Parameters

• Feedback Control

• Mixture of Expert (MoE)
Parameters governed by real-time state

𝑑ℎ! = 𝑓 ℎ!, 𝑢! ℎ! 𝑑𝑡, 

Sparse gating
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MoE, N. Shazeer et al., ICLR 2017
Kernel method, B. Schölkopf et al., MIT press 2002

discretization

𝑢! ℎ! ≈ ∑%𝐾 ℎ!, ℎ!% 𝑢!(ℎ!% ),
Kernel method

Experts



Explain MoE from A Control-Theoretic Perspective

• Non-feedback Control

Neural Parameters

• Feedback Control

Parameters governed by real-time state

𝑑ℎ! = 𝑓 ℎ!, 𝑢! ℎ! 𝑑𝑡, 
discretization

• Mode-switching Control

Multiple sub-strategies governed by distributional attribute

𝑢! ℎ! = 𝜅' (!!) (ℎ!).

MoE, N. Shazeer et al., ICLR 2017; J. C. Doyle et al., 2013; J. D. Boskovic et al., IEEE 2021
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discretization

Distribution-aware MoE

discretization

MoE

Neural Network



Distribution-aware Mixture of Expert (dMoE)
• An optimal control-inspired approach to achieve distribution-aware adaptation of network
• Specific focus on radiotherapy target volume contouring in Radiation Oncology

Attribute Flag
(Tumor stage)

𝒂𝒕𝒕𝒓 ∈ {𝑻𝟏, 𝑻𝟐, 𝑻𝟑, 𝑻𝟒}

Input OutputdMoE Segmentation Network
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Experimental Results



Experimental Settings
• Diverse medical image segmentation datasets

Scanning Laser Ophthalmoscopy (SLO) Fundus 
for Optic Cup & Neuroretinal Rim

Tr
ai

ni
ng

 D
at

as
et

Asian   Black   White
Race

Dermatology Skin 
for Lesion

Tr
ai

ni
ng

 D
at

as
et

Age
20     40     60     80

Pelvic CT 
for Radiotherapy Target 

Tr
ai

ni
ng

 D
at

as
et

T1       T2       T3       T4
T-stage

Harvard-FairSeg, Y. Tian et al., ICLR 2024; HAM10000, P. Tschandl et al., Scientific Data 2018; Radiotherapy Target Dataset, Severance Hospital, South Korea (IRB numbers 4-2023-0179, 9-2023-0161, and 3-2023-0396)



Experimental Settings
• 2D Transformer architectures

TransUNet, J. Chen et al., arXiv 2021; 3D U-Net, Ö. Çiçek et al., MICCAI 2016  

• 3D Residual U-Net architectures

dMoE (Distribution-aware Mixture of Experts)
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• dMoE training
ü Top-K : 2
ü #n of Expert : 8
ü Expert : MLP (Linear – ReLU – Linear – Dropout)
ü Training : Single NVIDIA A100 80 GB memory GPU



Improving Fairness in 2D Medical Image Segmentation
Data / Attribute

Trainset Distribution
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Improving Fairness in 3D Radiotherapy Target Contouring
Data / Attribute

Ground Truth Labels dMoE (Ours)MoEFEBSBaseline
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Computationally Efficient with Optimal Performance



Conclusion



• We introduce Distribution-aware Mixture of Experts (dMoE).

• We enhance MoE gating mechanism to incorporate distributional information as 
a mode-switching control for adaptive parameter selection.

• dMoE advances equitable and reliable AI-driven medical image analysis.

• dMoE holds promise in adapting trained models to unknown distributions, 
thereby improving the success of clinical AI integration across diverse hospitals.

Summary
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Variations in Target Volume DelineationCenter A
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Y. Oh et al., In Revision for IEEE TPAMI
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Thank you!

https://github.com/tvseg/dMoE

ArXiv


