

Distribution-aware Fairness Learning in Medical Image Segmentation From A Control-Theoretic Perspective

International Conference on Machine Learning (ICML) 2025, (Top-2.6% Spotlight Paper)

Yujin Oh*1, Pengfei Jin*1, Sangjoon Park*2,3, Sekeun Kim1, Siyeop Yoon1, Kyungsang Kim1, Jin Sung Kim2,4, Xiang Li^{†1}, Quanzheng Li^{†1}

*Co-first authors, †Corresponding Authors

¹Center for Advanced Medical Computing and Analysis (CAMCA), Harvard Medical School and Massachusetts General Hospital (MGH)

²Department of Radiation Oncology, Yonsei University College of Medicine, Yonsei University

³Institute for Innovation in Digital Healthcare, Yonsei University

⁴Oncosoft Inc.

Motivation

Biased Clinical Data Distribution

Patient Distribution in Prostate Cancer Treated with External Radiotherapy

Fairness Learning in Medical Al Performance

- Medical data is often ill-posed due to:
 - Demographics (age, gender, race)
 - Clinical variability (disease severity)
- Imbalanced data distribution during AI training leads to biased model performance
- Advanced fairness learning strategies:
 - FEBS (Y. Tian et al., ICLR 2024)
 - FairDiff (Li et al., MICCAI 2024)
 - >> Demographic aspect
- Our goal:
 - >> Both demographic & clinical aspect
 - >> Account for distributional patterns

Motivated by Sparse Gating from Mixture of Expert

Mixture of Expert (MoE)

: leverages sparse gating for computational efficiency in large neural networks

$$y = \sum_{i}^{k} G(x)_{i} E_{i}(x)$$

Explain MoE from

A Control-Theory

Distribution-aware MoE (dMoE)

$$h_{l+1} = h_l + \sum_{i}^{k} G_i^{attr}(h_l) E_i(h_l)$$

Distribution-aware Mixture of Experts

Theory

Explain MoE from A Control-Theoretic Perspective

- Neural Residual Network
- Forward Euler Scheme of Ordinary Differential Equation

$$h_{l+1} = h_l + f(h_l, \theta_l).$$

$$\frac{dh_t}{dt} = f(h_t, u_t),$$

Neural ODE, R. Chen, NeurIPS 2018; LM-Resnet, Y. Lu et al., PMLR 2018

Non-feedback Control

- Feedback Control
- Mixture of Expert (MoE)

$$\frac{dh_t}{dt} = f(h_t, \underline{u_t}),$$
Neural Parameters

$$dh_t = f(h_t, u_t(h_t))dt,$$

Parameters governed by real-time state

Kernel method

discretization
$$h_{l+1} = h_l + \sum_{i}^{k} G(h_l)_i E_i(h_l)$$

$$u_t(h_t) \approx \sum_{i} K(h_t, h_t^i) u_t(h_t^i),$$
 Sparse gating Experts

MoE. N. Shazeer et al., ICLR 2017 Kernel method, B. Schölkopf et al., MIT press 2002

Explain MoE from A Control-Theoretic Perspective

Non-feedback Control

$$\frac{dh_t}{dt} = f(h_t, \underline{u_t}),$$
Neural Parameters

Feedback Control

$$dh_t = f(h_t, u_t(h_t))dt,$$

Parameters governed by real-time state

Mode-switching Control

$$u_t(h_t) = \kappa_{s(attr)}(h_t).$$

Multiple sub-strategies governed by distributional attribute

discretization

discretization

discretization

MoE

Distribution-aware MoE

$$h_{l+1} = h_l + \sum_{i}^{k} G_i^{attr}(h_l) E_i(h_l)$$

Distribution-aware Mixture of Expert (dMoE)

- An optimal control-inspired approach to achieve distribution-aware adaptation of network
- Specific focus on radiotherapy target volume contouring in Radiation Oncology

Experimental Results

Experimental Settings

• Diverse medical image segmentation datasets

Table 6. Detailed distribution of data across attribute subgroups.

Harvard-FairSeg					HAM1	HAM10000						Radiotherapy Target Dataset					
Dataset	Attribute (Race)			Total		Attribute (Age)				Total	Attribute (T-stage)						
	Total	Asian	Black	White	Total	≥ 80	≥ 60	≥ 40	≥ 20	< 20	Total	T1	T2	Т3	T4		
Trainset	7945	750	1174	6021	8137	191	1324	3693	2356	573	721	26	227	425	43		
(%)	(100)	(9)	(15)	(76)	(100)	(2)	(16)	(45)	(31)	(7)	(100)	(4)	(31)	(59)	(6)		
Testset	2000	169	299	1532	1061	121	469	328	120	24	275	11	129	114	21		

Experimental Settings

2D Transformer architectures

Table 4. dMoE within Transformer (TransUNet).

Module	Layer Block	Resample	dMoE	Data dimension $(C \times H \times W)$
In	-	-	-	$Ch_{in} \times 224 \times 224$
111	Conv	-	-	$1 \times 14 \times 14$
	AttentionBlock ₁	-		$768 \times (14 \times 14)$
	AttentionBlock ₂			$768 \times (14 \times 14)$
Encoder	:		dMoE	:
	AttentionBlock ₁₁	-		$768 \times (14 \times 14)$
	$AttentionBlock_{12}$	-		$768 \times (14 \times 14)$
	UpResBlock ₄	Up	-	$256 \times 28 \times 28$
Decoder	UpResBlock ₃	Up		$128 \times 56 \times 56$
Decoder	UpResBlock ₂	Up	-	$64 \times 112 \times 112$
	UpResBlock ₁	Up	-	$16 \times 224 \times 224$
Out	Conv	-	-	$Ch_{out} \times 224 \times 224$

3D Residual U-Net architectures

Table 5. dMoE within 3D CNN (3D ResUNet).

Module	Layer Block	Resample	dMoE	Skip- Connection	Data dimension $(C \times H \times W \times D)$
In	Conv	-	-	-	$Ch_{in} \times 384 \times 384 \times 128$
	ResBlock ₁	Down	$dMoE_1$	¬	$48 \times 192 \times 192 \times 64$
	ResBlock ₂	Down	$dMoE_2$	⋾	$48 \times 96 \times 96 \times 32$
Encoder	ResBlock ₃	Down	$dMoE_3$	\neg	$96 \times 48 \times 48 \times 16$
	ResBlock ₄	Down	$dMoE_4$	\supset	$192 \times 24 \times 24 \times 8$
	ResBlock ₅	Down	$dMoE_5$		$384 \times 12 \times 12 \times 4$
	UpResBlock ₄	Up	-		$192 \times 24 \times 24 \times 8$
Decoder	UpResBlock ₃	Up	-	\downarrow	$96 \times 48 \times 48 \times 16$
Decoder	UpResBlock ₂	Up	-	↲	$48 \times 96 \times 96 \times 32$
	UpResBlock ₁	Up	-	\downarrow	$48 \times 192 \times 192 \times 64$
Out	TransposeConv	Up	-	-	$\overline{Ch_{out} \times 384 \times 384 \times 128}$

dMoE training

✓ Top-K : 2✓ #n of Expert : 8

✓ Expert : MLP (Linear – ReLU – Linear – Dropout)

✓ Training : Single NVIDIA A100 80 GB memory GPU

Improving Fairness in 2D Medical Image Segmentation

Data / Attribute

Trainset Distribution Asian Black White Race

Table 1. Comparison on 2D Harvard-FairSeg dataset with race as the distribution attribute.

Method		All (n=	=2000)		Asian ((n=169)	Black (n=299)		White (n=1532)	
Wilding	ES-Dice (CIs)	Dice (CIs)	ES-IoU (CIs)	IoU (CIs)	Dice	IoU	Dice	IoU	Dice	IoU
Rim Segmentation	23				1450		112			
TransUNet [†] (Chen et al., 2021)	0.703	0.793	0.585	0.671	0.746	0.616	0.731	0.599	0.811	0.691
+ ADV [†] (Madras et al., 2018)	0.700	0.791	0.583	0.668	0.741	0.612	0.729	0.598	0.809	0.689
+ DRO [†] (Sagawa et al., 2019)	0.700	0.790	0.581	0.667	0.747	0.618	0.723	0.590	0.808	0.689
+ FEBS [†] (Tian et al., 2024)	0.705	0.795	0.587	0.673	0.748	0.619	0.733	0.602	0.813	0.694
+ FairDiff [‡] (Li et al., 2024)	0.716	0.800	0.596	0.680	0.757	0.628	0.743	0.611	0.817	0.699
+ MoE	0.733 (0.713-0.752)	0.804 (0.799-0.809)	0.614 (0.596-0.633)	0.685 (0.680-0.691)	0.760	0.635	0.763	0.635	0.817	0.701
+ dMoE	0.743 (0.723-0.763)	0.813 (0.808-0.818)	0.627 (0.608-0.645)	0.698 (0.692-0.704)	0.769	0.645	0.776	0.652	0.825	0.713
Cup Segmentation										
TransUNet [†] (Chen et al., 2021)	0.828	0.848	0.730	0.753	0.827	0.728	0.849	0.758	0.850	0.755
+ ADV [†] (Madras et al., 2018)	0.826	0.841	0.727	0.743	0.825	0.726	0.842	0.748	0.843	0.744
+ DRO [†] (Sagawa et al., 2019)	0.820	0.844	0.725	0.748	0.820	0.723	0.847	0.753	0.846	0.750
+ FEBS [†] (Tian et al., 2024)	0.825	0.846	0.727	0.750	0.825	0.725	0.848	0.755	0.848	0.751
+ FairDiff [‡] (Li et al., 2024)	0.825	0.848	0.736	0.753	0.832	0.735	0.848	0.757	0.850	0.754
+ MoE	0.830 (0.809-0.847)	0.854 (0.849-0.860)	0.739 (0.720-0.754)	0.762 (0.755-0.768)	0.845	0.757	0.842	0.748	0.857	0.765
+ dMoE	0.832 (0.810-0.853)	0.862 (0.856-0.867)	0.745 (0.722-0.765)	0.773 (0.766-0.779)	0.844	0.755	0.851	0.761	0.866	0.777

Table 2. Comparison on 2D HAM10000 dataset for skin lesion segmentation with age as the distribution attribute.

Method		A (n=1	.ll 061)		_	≥ 80 121)	Age (n=4		Age (n=3	≥ 40 328)	_	≥ 20 120)	Age (n=	< 20 (24)
	ES-Dice (CIs)	Dice (CIs)	ES-IoU (CIs)	IoU (CIs)	Dice	IoU	Dice	IoU	Dice	IoU	Dice	IoU	Dice	IoU
TransUNet (Chen et al., 2021)	0.792 (0.737-0.841)	0.876 (0.863-0.889)	0.714 (0.664-0.766)	0.824 (0.809-0.838)	0.862	0.787	0.868	0.809	0.888	0.846	0.895	0.857	0.875	0.839
+ FEBS (Tian et al., 2024)	0.757 (0.704-0.807)	0.858 (0.845-0.872)	0.667 (0.613-0.719)	0.798 (0.783-0.812)	0.831	0.747	0.844	0.774	0.884	0.837	0.871	0.827	0.869	0.830
+ MoE	0.796 (0.741-0.844)	0.882 (0.868-0.895)	0.721 (0.671-0.770)	0.833 (0.818-0.846)	0.864	0.794	0.875	0.820	0.889	0.851	0.904	0.869	0.882	0.850
+ dMoE	0.801 (0.745-0.847)	0.884 (0.870-0.896)	0.725 (0.673-0.776)	0.834 (0.820-0.847)	0.864	0.791	0.881	0.824	0.890	0.850	0.901	0.866	0.880	0.846

Improving Fairness in 3D Radiotherapy Target Contouring

Data / Attribute

Table 3. Comparison on 3D radiotherapy target segmentation with **tumor stage** as the distribution attribute.

Method	All (n=275)					T1 (n=11)		T2 (n=129)		T3 (n=114)		n=21)
Tradiou .	ES-Dice (CIs)	Dice (CIs)	ES-IoU (CIs)	IoU (CIs)	Dice	IoU	Dice	IoU	Dice	IoU	Dice	IoU
3D ResUNet (Çiçek et al., 2016)	0.487 (0.447-0.529)	0.610 (0.589-0.630)	0.367 (0.336-0.399)	0.462 (0.440-0.482)	0.493	0.341	0.569	0.420	0.659	0.511	0.656	0.506
+ FEBS (Tian et al., 2024)	0.434 (0.406-0.467)	0.586 (0.567-0.604)	0.322 (0.302-0.346)	0.433 (0.414-0.452)	0.442	0.288	0.528	0.374	0.652	0.501	0.685	0.527
+ MoE	0.452 (0.415-0.492)	0.608 (0.586-0.628)	0.342 (0.314-0.372)	0.461 (0.439-0.482)	0.492	0.345	0.542	0.393	0.674	0.532	0.708	0.557
+ dMoE	0.499 (0.469-0.531)	0.650 (0.628-0.671)	0.384 (0.358-0.410)	0.506 (0.483-0.528)	0.718	0.571	<u>0.585</u>	<u>0.435</u>	0.693	0.556	0.778	0.641

Note. The underlined value indicates the worst-group accuracy among distribution attributes for each method.

Computationally Efficient with Optimal Performance

	TransUNet	+MoE	+dMoE	3D ResUNet	+MoE	+dMoE			
Input	224	$W \times 224 \text{ H}$	H	$384 \text{ W} \times 384 \text{ H} \times 128 \text{ D}$					
GFlops	45.84	90.28	90.28	1542.36	1761.30	1761.30			
Params (M)	91.67	129.46	129.51	13.28	26	26.05			

Table 7. Computational complexity comparison.

Method	GFlops ↓	All (n=275	5)	T1 (n=11)	T2 (n=129)	T3 (n=114)	T4 (n=21)
		ES-Dice(D)	Dice	Dice	Dice	Dice	Dice
dMoE (Ours)	1761.30	0.499	0.650	0.718	0.585	0.693	0.778
Multiple networks for each attribute	5729.44	0.457	0.606	0.599	0.515	0.681	0.760

Table 8. Comparison to multiple networks for each attribute.

Conclusion

Summary

- We introduce **Distribution-aware** Mixture of Experts (dMoE).
- We enhance MoE gating mechanism to incorporate distributional information as a mode-switching control for adaptive parameter selection.

- dMoE advances equitable and reliable Al-driven medical image analysis.
- dMoE holds promise in adapting trained models to unknown distributions, thereby improving the success of clinical Al integration across diverse hospitals.

Future Work: Mixture of Multicenter Experts (MoME)

Distribution-aware Fairness Learning in Medical Image Segmentation From A Control-Theoretic Perspective

International Conference on Machine Learning (ICML) 2025, (Top-2.6% Spotlight Paper)

Thank you!

https://github.com/tvseg/dMoE

ArXiv

