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Abstract

Experimental results

Topological Contrastive Losses

Multimodal Machine Learning systems, such as CLIP/BLIP models, have Total Persistence Loss: For a dimension 7, the a-total persistence of dimension 7 is

become increasingly prevalent, yet remain susceptible to adversarial attacks. computed on the persistence diagram D;(X): Resulngﬁ-SDLIP-TE&&??L,EAI\S& N N _—
.Thls work investigates th? topological signatures thgt arise bet.ween Pers”(X) = Z (d — b)° 3 H d ﬂ I ﬂ H H H H ﬂ H H
image and text embeddings and shows how adversarial attacks disrupt 5 W
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their alignment. We specifically leverage persistent homology and introduce
two novel Topological-Contrastive losses based on Total Persistence and
Multi-scale kernel methods to analyze the topological signatures introduced
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The TP loss of order v between two point clouds is the summation of the difference at all
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more adversarial samples are injected in the data. We then integrate these Multi-scale Kernel Loss: The loss is based on the a kernel £, : D X D — R acting on

signatures into Maximum Mean Discrepancy tests, creating a novel class of persistence diagrams of point clouds X and Y Results on BLIP-ImageNet
_ Test power - PGD Test power - AutoAttack Test power - FGSM Test power - BIM Type | error
tests that leverage topological signatures for better adversarial detection. ko (Di(X), Di(Y)) := 8710 Z 6—"@—53 _ 6—%% 3 Iﬂ Iﬂ Iﬂ Iﬂ lﬂ Iﬂ —Iﬂ |ﬂ *yp ----------
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T()p()l()gi(;al Signatures of Adversaries where p and ¢ are the birth-death pairs from the corresponding persistence diagrams, and s ams s s ams s s s
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q = (d,b) denotes the mirror of ¢ = (b,d) through the diagonal. For our purpose, we
define the MK loss of scale o between two point clouds by:
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Monotonic behavior of Topological Signatures: the topological signa-
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of adversarial examples in the data increases.
Detection with Topological Features: We utilize Lp¢ for detection by computing

FGSM PGD AutoAttack APGD

2 3 =S sample-level features derived from the topological loss: Y = VyLypa(Y,T), where Y Text attacks. Adversary: A PHOTO OF AN APPLE THAT
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i A | | : % represents the image’s logits and 1" denotes the text embedding. RESEMBLES AN AQUARIUM FISH (Prediction AQUARIUM FISH)
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