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Introduction

Removing the influence of data subset Dg from a trained model F, so that
the resulting model behaves as if the data were never seen.
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e Why it matters

» Comply with "right to be forgotten”
laws (GDPR, CCPA).

» Remove copyrighted or toxic content
in deployed deep learning models.
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Removing the influence of data subset Dg from a trained model F, so that
the resulting model behaves as if the data were never seen.

e Why it matters

» Comply with “right to be forgotten” 8.88 N % _______ Q
laws (GDPR, CCPA). 000 -
. . orget da Model '
» Remove copyrighted or toxic content Bieiias OL;
in deployed deep learning models. pnleaming %)
e Main approaches s
» Exact retraining on D — Dg Concept: delete subset, apply
* Gold standard but costly! unlearning routine, audit residual
influence.

» Certified unlearning
% Impractical assumptions.
» Approximate unlearning

% Membership Inference Attacks
(MIAs) for evaluations.
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Basics

@ Training set: D
o Forget set: Dp cD
@ Remain set: Dg =D - D¢

Definition (Machine Unlearning)
Given:
@ model architecture F,
@ distribution of the learned parameters ©p when F is trained on D,
@ subset D to unlearn,
o distribution of the learned parameters ©p. when F is trained on Dg,
@ A set of parameters 6, ~ Op,

machine unlearning method M £(6,D, Dg) gets 0, ~ Op as input and
derives a new set of parameters 6, ~ Op, (aka the unlearned model).
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Key Observation 1: The main difference between the predictions on
D+ (unseen samples) and Dg (observed samples) is that the model’s
predictions are much more confident for the samples that it has ob-
served compared to the unseen samples.
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Figure: confidence values of the retrained model for the remaining set (Remain),
test set (Test), and forget set (Forget), when the size of the forget set is %10
(1st plot) and %50 (2nd plot) of the training set.
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Motivation (cont.)

Key Observation 2: Fine-tuning a model on the adversarial exam-
ples does not lead to catastrophic forgetting!
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@ ResNet-18 model trained on CIFAR-10
@ From left to right, Adv shows fine-tuning on :
> DUDA, DF UDA, and DA
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Adversarial set

Algorithm Build Adversarial Set (F, A, Dg, €init)

1. Dp = {}

2: for (z,y) in Df do

3: € = €init

4: while TRUE do

5: Tadv = A(a:, 6)

6: Yadv = j:(xadv)

7 if Yuqv! = y then
8: Break

0: end if
10: €=2¢
11: end while
12: Add (xadvayadv) to Da

13: end for
14: Return Dp
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Evaluation

Unlearning with access to Dgr: Amun outperforms all other methods by
achieving lowest Avg. Gap and Amun_ g, achieves comparable results.
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Evaluation (con

Unlearning with access to only Dg: As the results show, ,sqi0n

significantly outperforms all other methods, and achieves comparable
results.
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Theoretical results

AMUN gets 6, ~ ©p as input and derives a new set of parameters 6’. The
set of parameters 6, ~ Op, is derived when retraining the model from
scratch on Dg.
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Theoretical results

AMUN gets 6, ~ ©p as input and derives a new set of parameters 6’. The
set of parameters 6, ~ Op, is derived when retraining the model from
scratch on Dg.

@ We derive an upper-bound on |6’ -6, |s.
» used as a proxy for the difference from the retrained model.

@ The implications of the theoretical results justifies the design choices
in AMUN and instructs how to improve the results.
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Theoretical results (implications)

The following factors enhances the quality of unlearning with AMUN:
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@ The generalization of the retrained model to the unseen samples.
» Implying better results when the forget set is smaller.
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Theoretical results (implications)

The following factors enhances the quality of unlearning with AMUN:
@ Adversarial examples that are closer to the original samples.
@ Higher quality of adversarial example.

@ Transferability of the adversarial example generated on the original
model to the retrained model.

Preventing from overfitting to the adversarial example.

The generalization of the retrained model to the unseen samples.
» Implying better results when the forget set is smaller.

A lower Lipschitz constant of the model.
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Thank Youl
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