NOT ALL WRONG IS BAD: USING ADVERSARIAL EXAMPLES FOR UNLEARNING

Ali Ebrahimpour-Boroojeny, Hari Sundaram, & Varun Chandrasekaran

University of Illinois at Urbana-Champaign

Introduction

Goal

Removing the influence of data subset \mathcal{D}_F from a trained model \mathcal{F} , so that the resulting model behaves as if the data were never seen.

Introduction

Goal

Removing the influence of data subset \mathcal{D}_F from a trained model \mathcal{F} , so that the resulting model behaves as if the data were never seen.

Why it matters

- Comply with "right to be forgotten" laws (GDPR, CCPA).
- Remove copyrighted or toxic content in deployed deep learning models.

Introduction

Goal

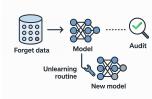
Removing the influence of data subset \mathcal{D}_F from a trained model \mathcal{F} , so that the resulting model behaves as if the data were never seen.

Why it matters

- Comply with "right to be forgotten" laws (GDPR, CCPA).
- Remove copyrighted or toxic content in deployed deep learning models.

Main approaches

- Exact retraining on \mathcal{D} \mathcal{D}_{F}
 - ★ Gold standard but costly!
- Certified unlearning
 - ★ Impractical assumptions.
- Approximate unlearning
 - ★ Membership Inference Attacks (MIAs) for evaluations.



Concept: delete subset, apply unlearning routine, audit residual influence.

Basics

ullet Training set: ${\cal D}$

• Forget set: $\mathcal{D}_{\mathsf{F}} \subset \mathcal{D}$

• Remain set: $\mathcal{D}_R = \mathcal{D} - \mathcal{D}_F$

Definition (Machine Unlearning)

Given:

• model architecture \mathcal{F} ,

• distribution of the learned parameters $\Theta_{\mathcal{D}}$ when \mathcal{F} is trained on \mathcal{D} ,

• subset \mathcal{D}_{F} to unlearn,

 \bullet distribution of the learned parameters $\Theta_{\mathcal{D}_F}$ when \mathcal{F} is trained on $\mathcal{D}_R,$

• A set of parameters $\theta_{o} \sim \Theta_{\mathcal{D}}$,

machine unlearning method $\mathcal{M}_{\mathcal{F}}(\theta, \mathcal{D}, \mathcal{D}_{\mathsf{F}})$ gets $\boldsymbol{\theta}_{o} \sim \Theta_{\mathcal{D}}$ as input and derives a new set of parameters $\boldsymbol{\theta}_{u} \sim \Theta_{\mathcal{D}_{\mathsf{F}}}$ (aka the unlearned model).

Motivation

Key Observation 1: The main difference between the predictions on \mathcal{D}_T (unseen samples) and \mathcal{D}_R (observed samples) is that the model's predictions are much more confident for the samples that it has observed compared to the unseen samples.

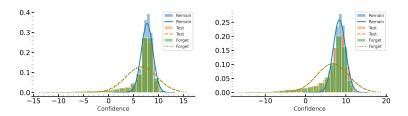
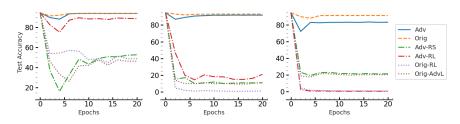


Figure: confidence values of the retrained model for the remaining set (Remain), test set (Test), and forget set (Forget), when the size of the forget set is %10 (1st plot) and %50 (2nd plot) of the training set.

Motivation (cont.)

Key Observation 2: Fine-tuning a model on the adversarial examples does not lead to catastrophic forgetting!



- ResNet-18 model trained on CIFAR-10
- From left to right, Adv shows fine-tuning on :
 - ▶ $\mathcal{D} \cup \mathcal{D}_A$, $\mathcal{D}_F \cup \mathcal{D}_A$, and \mathcal{D}_A

Algorithm Build Adversarial Set $(\mathcal{F}, \mathcal{A}, \mathcal{D}_{\mathsf{F}}, \epsilon_{init})$

```
1: \mathcal{D}_{A} = \{\}
 2: for (x,y) in \mathcal{D}_{\mathsf{F}} do
 3:
     \epsilon = \epsilon_{init}
     while TRUE do
 4:
                 x_{adv} = \mathcal{A}(x,\epsilon)
 5:
                y_{adv} = \mathcal{F}(x_{adv})
 6:
 7:
                 if y_{adv}! = y then
                       Break
 8:
                 end if
 9:
10:
                \epsilon = 2\epsilon
     end while
11:
     Add (x_{adv}, y_{adv}) to \mathcal{D}_{\Delta}
12:
13: end for
14: Return \mathcal{D}_{\mathsf{A}}
```


Unlearning with access to $\mathcal{D}_{\mathbf{R}}$: Amun outperforms all other methods by achieving lowest Avg. Gap and Amun_{+SalUn} achieves comparable results.

	Random Forget (10%)					Random Forget (50%)					
	Unlearn Acc	RETAIN ACC	Test Acc	FT AUC	Avg. Gap	UNLEARN ACC	RETAIN ACC	Test Acc	FT AUC	Avg. Gap	
Retrain	94.49 ±0.20	100.0 ±0.00	94.33 ±0.18	50.00 ±0.42	0.00	92.09 ±0.37	100.0 ±0.00	91.85 ±0.33	50.01 ±0.12	0.00	
FT	95.16 ±0.29	96.64 ±0.25	92.21 ±0.27	52.08 ±0.34	2.06 ±0.10	94.24 ±0.30	95.82 ±0.31	91.21 ±0.33	51.74 ±0.36	2.17 ±0.13	
RL	95.54 ±0.14	97.47 ±0.08	92.17 ±0.10	51.33 ±0.63	1.74 ±0.18	94.83 ±0.44	99.79 ±0.04	90.08 ±0.16	50.78 ±0.14	1.38 ±0.09	
GA	98.94 ±1.39	99.22 ±1.31	93.39 ±1.18	60.96 ±2.93	4.28 ±0.47	100.00 ±0.00	100.00 ±0.00	94.65 ±0.07	63.39 ±0.26	4.62 ±0.00	
BS	99.14 ±0.31	99.89 ±0.06	93.04 ±0.14	57.85 ±1.12	3.48 ±0.32	55.24 ±5.11	55.67 ±4.90	50.16 ±5.28	55.19 ±0.42	32.01 ±3.8	
l_1 -Sparse	94.29 ±0.34	95.63 ±0.16	91.55 ±0.17	51.21 ±0.32	2.16 ±0.06	98.00 ±0.17	98.71 ±0.13	92.79 ±0.10	54.44 ±0.47	2.67 ±0.11	
SALUN	96.25 ±0.21	98.14 ±0.16	93.06 ±0.18	50.88 ±0.54	1.44 ±0.12	96.68 ±0.35	99.89 ±0.01	91.97 ±0.18	50.86 ±0.18	1.36 ±0.04	
Amun	95.45 ±0.19	99.57 ±0.00	93.45 ±0.22	50.18 ±0.36	0.62 ±0.05	93.50 ±0.09	99.71 ±0.01	92.39 ±0.04	49.99 ±0.18	0.33 ±0.0	
$Amun_{+SalUn}$	95.02 ±0.18	99.58 ±0.04	93.29 ±0.04	50.72 ±0.79	0.68 ±0.18	93.56 ±0.07	99.72 ±0.02	92.52 ±0.20	49.81 ±0.40	0.36 ±0.0	

Unlearning with access to only \mathcal{D}_{F} : As the results show, ${}_{+SalUn}$ significantly outperforms all other methods, and achieves comparable results.

		Rando	om Forget (10	%)	Random Forget (50%)					
	Unlearn Acc	RETAIN ACC	Test Acc	FT AUC	Avg. Gap	UNLEARN ACC	RETAIN ACC	Test Acc	FT AUC	Avg. Gap
RETRAIN	94.49 ±0.20	100.0 ±0.00	94.33 ±0.18	50.00 ±0.42	0.00	92.09 ±0.37	100.0 ±0.00	91.85 ±0.33	50.01 ±0.12	0.00
RL	100.00 ±0.00	100.00 ±0.00	94.45 ±0.09	61.85 ±0.25	4.31 ±0.06	100.00 ±0.00	100.00 ±0.00	94.57 ±0.14	61.99 ±0.10	4.29 ±0.03
GA	4.77 ±3.20	5.07 ±3.54	5.09 ±3.38	49.78 ±0.34	68.53 ±2.45	100.00 ±0.00	100.00 ±0.00	92.65 ±0.09	63.41 ±0.24	5.13 ±0.04
BS	100.00 ±0.00	100.00 ±0.00	94.48 ±0.04	61.41 ±0.29	4.20 ±0.07	100.00 ±0.00	100.00 ±0.00	94.58 ±0.08	62.43 ±0.14	4.40 ±0.05
SALUN	100.00 ±0.00	100.00 ±0.00	94.47 ±0.10	61.09 a0.40	4.11 ±0.09	100.00 ±0.00	100.00 ±0.00	$94.59 \scriptstyle\pm 0.12$	62.45 ±0.37	4.40 ±0.07
Amun	94.28 ±0.37	97.47 ±0.10	91.67 ±0.04	52.24 ±0.23	1.94 ±0.13	92.77 ±0.52	95.66 ±0.25	89.43 ±0.19	52.60 ±0.22	2.51 ±0.09
Amun _{+SalUn}	94.19 ±0.38	97.71 ±0.06	91.79 ±0.12	51.93 ±0.12	1.77 ±0.06	91.90 ±0.63	96.59 ±0.31	89.98 ±0.44	52.32 ±0.56	2.00 ±0.17

Theoretical results

Recall

AMUN gets $\theta_o \sim \Theta_{\mathcal{D}}$ as input and derives a new set of parameters θ' . The set of parameters $\theta_u \sim \Theta_{\mathcal{D}_F}$ is derived when retraining the model from scratch on \mathcal{D}_R .

Theoretical results

Recall

AMUN gets $\theta_o \sim \Theta_{\mathcal{D}}$ as input and derives a new set of parameters θ' . The set of parameters $\theta_u \sim \Theta_{\mathcal{D}_F}$ is derived when retraining the model from scratch on \mathcal{D}_R .

- We derive an upper-bound on $\|\theta' \theta_u\|_2$.
 - used as a proxy for the difference from the retrained model.

Theoretical results

Recall

AMUN gets $\theta_o \sim \Theta_{\mathcal{D}}$ as input and derives a new set of parameters θ' . The set of parameters $\theta_u \sim \Theta_{\mathcal{D}_F}$ is derived when retraining the model from scratch on \mathcal{D}_R .

- We derive an upper-bound on $\|\theta' \theta_u\|_2$.
 - used as a proxy for the difference from the retrained model.
- The implications of the theoretical results justifies the design choices in AMUN and instructs how to improve the results.

The following factors enhances the quality of unlearning with AMUN:

• Adversarial examples that are closer to the original samples.

- Adversarial examples that are closer to the original samples.
- Higher quality of adversarial example.

- Adversarial examples that are closer to the original samples.
- Higher quality of adversarial example.
- Transferability of the adversarial example generated on the original model to the retrained model.

- Adversarial examples that are closer to the original samples.
- Higher quality of adversarial example.
- Transferability of the adversarial example generated on the original model to the retrained model.
- Preventing from overfitting to the adversarial example.

- Adversarial examples that are closer to the original samples.
- Higher quality of adversarial example.
- Transferability of the adversarial example generated on the original model to the retrained model.
- Preventing from overfitting to the adversarial example.
- The generalization of the retrained model to the unseen samples.
 - Implying better results when the forget set is smaller.

- Adversarial examples that are closer to the original samples.
- Higher quality of adversarial example.
- Transferability of the adversarial example generated on the original model to the retrained model.
- Preventing from overfitting to the adversarial example.
- The generalization of the retrained model to the unseen samples.
 - Implying better results when the forget set is smaller.
- A lower Lipschitz constant of the model.

Thank You!

