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Leif Döring Benedikt Wille Maximilian Birr Mihail B̂ırsan Martin Slowik

Institute of Mathematics
University of Mannheim

ICML 2025



Background

Setting: Model free optimization algorithms for discounted MDP problems. States S,
actions A, state-reward transitions p, policies π.

Value functions: V π(s) = Eπ
s

[∑∞
t=0 γ

tRt

]
and Qπ(s, a) = Eπ

s,a

[∑∞
t=0 γ

tRt

]
.

Optimality: Policy π∗ is called optimal if V π∗
(s) = supπ V

π(s) for all s ∈ S.

Theorem (Dynamic Programming): If Q∗ is the unique solution to the Bellman
optimality equation T ∗Q = Q, then the greedy policy π∗ is optimal. Here

(T ∗Q)(s, a) = E(r ,s′)∼p(·|s,a)

[
r + γmax

a′∈A
Q(s ′, a′)

]
.

Value-iteration: Banach fixed-point theorem for contraction T ∗, convergence to Q∗.

Q-learning: Stochastic approx. variant of value-iteration, a.s. convergence to Q∗.



Overestimation problem

Problem: Q-learning update

Qn+1(s, a) = (1− α)Qn(s, a) + α
(
r + γmax

a′
Qn(s

′, a′)
)

does not give unbiased estimators of Q∗(s, a). Estimates Qn(s, a) of Q
∗(s, a) are

initially strongly overestimated.

Blue curve is sum of estimated Q-values in a grid world, see paper.

Explanation (in tabular setting): Estimating maxi E[Xi ] using the
pointwise estimator maxi Xi yields a positive bias. Important:
positive outliers overestimate the max, negative outliers don’t.

Overestimation reduction: double Q, clipping (TD3), MaxMin, Ensemble Q, TQC, ...



Main ideas

Idea 1: Overestimation bias of maxi Xi depends strongly on outliers, e.g. large
variances of random variables Xi lead to large positive biases. Thus, large variances of
estimated Q-values Qn(s, a1), ...,Qn(s, an).

Idea 2: Use distributional Q-learning to learn distribution ηn(s, a) behind Qn(s, a) and
then use V(η(s, a)) to decide whether need for overestimation control is large, or not.

→ see paper for theoretical backup (η contains epistemic and systemic uncertainty)

Idea 3: Take some overestimation reduction method and locally (in terms of
state-action pairs) adjust the correction. We built on double Q-learning (adaptive
double Q-learing), other choices are possible (e.g. locally adjusting number of atoms in
TQC).



ADDQ

Double Q-learning:

QA/B(s, a)←

Q-learning update︷ ︸︸ ︷
(1− α)QA/B(s, a) + α

(
r + γQA/B(s ′, z∗)

+

bias correction︷ ︸︸ ︷
α(γQB/A(s ′, z∗)− γQA/B(s ′, z∗)),

with z∗ = argmaxQA/B(s, a). Our modified bias correction:

β(s, a)× double Q-learning bias correction

for locally adaptive β that depends on estimated variances (→ see paper).

Idea: β ≈ 1 gives double Q (for large variances), β ≈ 0 gives Q (for small variances).



Results

Tabular example: Q and double-Q jointly suffer in examples that have local variability,
ADDQ can adjust locally to the situation.
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blue line: Q-learning (overestimation)
red line: double Q-learning (underestimation)
green line: ADDQ, local combination of Q and double Q

Deep RL: Pseudocode and experiments are provided in the paper. Experiments show
improvements (RLiable metrics) over C51 and QRDQN on Atari benchmark.

Implementation: ADDQ requires the change of three lines of code in C51/QRDQN
implementations. Computational overhead is minimal.



Conclusion

▶ We suggest to use distributional RL to optimize overestimation reduction
algorithms.

▶ We suggest a simple to implement add-on to distributional RL algorithm. Take
your overestimation method of choice and make it locally adaptive!

▶ Method works well on tabular examples, also in Stable-Baselines3 implementations
of C51 and QRDQN.

Questions? Suggestions? See you at our poster!


