

ADDQ

Adaptive Distributional Double Q-learning

Leif Döring Benedikt Wille Maximilian Birr Mihail Bîrsan Martin Slowik

Institute of Mathematics University of Mannheim

ICML 2025

Setting: Model free optimization algorithms for discounted MDP problems. States S, actions A, state-reward transitions p, policies π .

Value functions:
$$V^{\pi}(s) = \mathbb{E}_{s}^{\pi} \Big[\sum_{t=0}^{\infty} \gamma^{t} R_{t} \Big]$$
 and $Q^{\pi}(s, a) = \mathbb{E}_{s, a}^{\pi} \Big[\sum_{t=0}^{\infty} \gamma^{t} R_{t} \Big]$.

Optimality: Policy π^* is called optimal if $V^{\pi^*}(s) = \sup_{\pi} V^{\pi}(s)$ for all $s \in \mathcal{S}$.

Theorem (Dynamic Programming): If Q^* is the unique solution to the Bellman optimality equation $T^*Q=Q$, then the greedy policy π^* is optimal. Here

$$(T^*Q)(s,a) = \mathbb{E}_{(r,s')\sim p(\cdot|s,a)}\left[r + \gamma \max_{a'\in\mathcal{A}} Q(s',a')\right].$$

Value-iteration: Banach fixed-point theorem for contraction T^* , convergence to Q^* .

Q-learning: Stochastic approx. variant of value-iteration, a.s. convergence to Q^* .

Problem: Q-learning update

$$Q_{n+1}(s,a) = (1-\alpha)Q_n(s,a) + \alpha \left(r + \gamma \max_{a'} Q_n(s',a')\right)$$

does not give unbiased estimators of $Q^*(s, a)$. Estimates $Q_n(s, a)$ of $Q^*(s, a)$ are initially strongly overestimated.

Blue curve is sum of estimated Q-values in a grid world, see paper. Explanation (in tabular setting): Estimating $\max_i \mathbb{E}[X_i]$ using the pointwise estimator $\max_i X_i$ yields a positive bias. Important: positive outliers overestimate the max, negative outliers don't.

Overestimation reduction: double Q, clipping (TD3), MaxMin, Ensemble Q, TQC, ...

- Idea 1: Overestimation bias of $\max_i X_i$ depends strongly on outliers, e.g. large variances of random variables X_i lead to large positive biases. Thus, large variances of estimated Q-values $Q_n(s, a_1), ..., Q_n(s, a_n)$.
- Idea 2: Use distributional Q-learning to learn distribution $\eta_n(s,a)$ behind $Q_n(s,a)$ and then use $\mathbb{V}(\eta(s,a))$ to decide whether need for overestimation control is large, or not.
- ightarrow see paper for theoretical backup (η contains epistemic and systemic uncertainty)
- Idea 3: Take some overestimation reduction method and locally (in terms of state-action pairs) adjust the correction. We built on double Q-learning (adaptive double Q-learning), other choices are possible (e.g. locally adjusting number of atoms in TQC).

Double Q-learning:

$$Q^{A/B}(s,a) \leftarrow \overbrace{(1-\alpha)Q^{A/B}(s,a) + \alpha(r + \gamma Q^{A/B}(s',z^*))}^{Q\text{-learning update}} \\ + \overbrace{\alpha(\gamma Q^{B/A}(s',z^*) - \gamma Q^{A/B}(s',z^*))}^{Q\text{-learning update}},$$

with $z^* = \operatorname{argmax} Q^{A/B}(s, a)$. Our modified bias correction:

$$\beta(s, a) \times \text{double Q-learning bias correction}$$

for locally adaptive β that depends on estimated variances (\rightarrow see paper).

Idea: $\beta \approx 1$ gives double Q (for large variances), $\beta \approx 0$ gives Q (for small variances).

Tabular example: Q and double-Q jointly suffer in examples that have local variability, ADDQ can adjust locally to the situation.

F	1	2	S
4	5	6	7
8	9	10	11
12	G	14	15

blue line: Q-learning (overestimation) red line: double Q-learning (underestimation) green line: ADDQ, local combination of Q and double Q

Deep RL: Pseudocode and experiments are provided in the paper. Experiments show improvements (RLiable metrics) over C51 and QRDQN on Atari benchmark.

Implementation: ADDQ requires the change of three lines of code in C51/QRDQN implementations. Computational overhead is minimal.

- ► We suggest to use distributional RL to optimize overestimation reduction algorithms.
- ► We suggest a simple to implement add-on to distributional RL algorithm. Take your overestimation method of choice and make it locally adaptive!
- ▶ Method works well on tabular examples, also in Stable-Baselines3 implementations of C51 and QRDQN.

Questions? Suggestions? See you at our poster!