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Best Subset Selection
Subset Selection : Selecting the most important features in
high-dimensional data is a fundamental challenge in statistics and
machine learning.

Application :
• Feature selection [Kohavi and John, 1997, Das and Kempe, 2011]
• Sparse regression [Miller, 2002, Das and Kempe, 2018]
• Compressed sensing [Chen et al., 2001]
• Maximum coverage [Feige, 1998]
• Large language model [Wang et al., 2024]
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Best Subset Selection

The fundamental multivariate linear regression model with coefficient
vector β ∈ Rp×1 is expressed as follows:

y = Xβ + ϵ, (1)

where y ∈ Rn×1 represents the response vector, X ∈ Rn×p is the design
matrix, and ϵ ∈ Rn×1 denotes the measurement noise.
The goal of best subset selection is to select a subset of features by
identifying nonzero coefficients (i.e., Active / Support Set S) in β that
achieves a balance between accuracy and model simplicity:

min
β∈Rp

Ln (β) ≜
1

2n
∥y − Xβ∥2

2 s. t. ∥β∥0 ≤ K , (2)

where K is maximum allowed sparsity level.
Best subset selection (BSS) is considered the gold standard for feature
selection, but the problem is NP-hard!
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Subset Selection Algorithms
Relaxation-based Methods

Since problem (2) is NP-hard [Davis et al., 1997], significant efforts
have been directed toward developing polynomial-time
approximation algorithms.
Relaxation-based methods:

• Least Absolute Shrinkage and Selection Operator (LASSO)
[Tibshirani, 1996]

• Adaptive LASSO [Zou, 2006]
• Smoothly Clipped Absolute Deviation (SCAD) [Fan and Li, 2001]
• Minimax Concave Penalty (MCP) [Zhang, 2010].

However, these methods could be computational burdensome
[Hazimeh and Mazumder, 2020, Needell and Tropp, 2009] and are
also difficult to control the number of selected features.
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Subset Selection Algorithms
Greedy Algorithms

Another widely used class of methods is greedy algorithms, known for
their high computational efficiency and simplicity.
Greedy algorithms:

• Perform subset selection directly by selecting and eliminating
basis based on feature importance.

• The criteria for feature selection and elimination in this category
are generally consistent.

• Differ only in the underlying combination strategies.
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Greedy Algorithms
Feature Selection Criterion

Correlation-based Selection. Greedy algorithms typically select
features based on their correlation with residuals, calculated as
follows:

rk = y − Xβk−1, j∗ = argmax
j∈Sc

|rk T Xj |
∥Xj∥2

, (3)

where Xj is the j-th column of X, Sc is the complement of support S,
βk−1 denotes the updated coefficient on S, and rk represents the
residual at step k .
Representative methods:
• Matching Pursuit (MP) [Mallat and Zhang, 1993].
• Orthogonal Matching Pursuit (OMP) [Pati et al., 1993].
• CoSaMP [Needell and Tropp, 2009].
• Least Angle Regression (LARS) [Efron et al., 2004].
• Adaptive Best-Subset Selection (ABESS) [Zhu et al., 2020].
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Greedy Algorithms
Feature Elimination Criterion

Wald-T Test Statistics-based Elimination. Feature elimination often
relies on the absolute value of Wald-T test statistics, defined as (here
we assume the columns of X are centralized with zero mean for
convenience):

|Tj | =
|βk−1

j |
Mβk−1

j

, where Mβk−1
j

=
∥rk∥/

√
df√

XT
j Xj

, j ∈ S, (4)

where df serves as degree of freedom. Elimination is often based on
minimizing the T-statistic or setting a threshold for deletion.
Representative methods:

• Iterative Hard Thresholding (IHT) [Blumensath and Davies, 2009].
• Hard Thresholding Pursuit (HTP) [Foucart, 2011].
• CoSaMP [Needell and Tropp, 2009].
• Adaptive Best-Subset Selection (ABESS) [Zhu et al., 2020].
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Classic Criteria

In general, greedy methods can be regarded as a combination of
correlation-based selection and T-statistic-based elimination, with
different strategies integrated to perform subset selection.

• Criteria (3) and (4), according to their formulas, focus solely on
the individual significance of features, neglecting their
interaction with other features.

• A feature that appears important within the current active set
might become less significant when the active set changes, and
conversely, a feature deemed less critical could gain importance
under a different active set configuration. The current criteria fail
to capture these dynamic properties.

• How to interpret these criteria from an optimization perspective?
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Optimization Perspective

From an optimization standpoint, the existing criteria can be
interpreted as the variation of objective function achieved by updating
the support set with fixed coefficients in the first step of block
coordinate descent. Specifically:
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Optimization Perspective

Step 1 (Support update with fixed coefficient): Maximize the
correlation in (3) (or minimize the T-statistics in (4)) for support set
updating is equivalent to solving (P0) (or (Q0)). The classical criteria (3)
and (4) corresponds to the variation of objective function value in this
part exactly.

argmin
β

∥y − Xβ∥2
2 (P0)

s. t. ∥β − βk−1∥0 ≤ 1, supp(βk−1) ⊂ supp (β) .

argmin
β

∥y − Xβ∥2
2 (Q0)

s. t. ∥β − βk−1∥0 ≤ 1, supp(β) ⊂ supp(βk−1).
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Optimization Perspective

Step 2 (Coefficient update with fixed support): It is followed by
refining the coefficients on the updated support set. This step also
leads to a change in the function value, which, however, is not
captured by the classical criteria.
Limitations of classic criteria:

• The constraints in (P0) and (Q0) (or equivalently, criteria (3) and
(4)) only allows one change in the support set of β while the
coefficients on the remaining support set are fixed.

• In the next step when coefficients are updated on newly selected
support set, the influence of newly chosen feature on the
remaining coefficients is not considered.
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Optimization Perspective

Modeling feature individual significance and interaction via block
coordinate descent:

• Step 1 measures the individual significance of the features.
• Step 2 assesses the interaction between features, where

classical criteria fail to capture.

Therefore, the update strategy in (P0) and (Q0) (or criteria (3) and (4))
can be understood as the objective of performing one step of block
coordinate descent, rather than an objective that takes into account
the overall descent.
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Optimal Selection and Elimination Problem
As analyzed above, to obtain the optimal solution at each step, we
consider the following optimization problems:

argmin
β

∥y − Xβ∥2
2 (P1)

s. t. ∥β∥0 = ∥βk−1∥0 + 1, supp(βk−1) ⊂ supp (β) ,

argmin
β

∥y − Xβ∥2
2 (Q1)

s. t. ∥β∥0 = ∥βk−1∥0 − 1, supp(β) ⊂ supp(βk−1),

where (P1) and (Q1) correspond to selection and elimination
subproblems for each step exactly.
• Unlike the constraint in (P0), the constraint in (P1) does not

require the coefficients fixed on the remaining support set.
• The new optimization problem consider a complete descent

(including both step 1&2), providing the optimal criterion.
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Optimal Selection and Elimination Criteria
Optimal Selection Criterion

Theorem 1

Problem (P1) is equivalent (in the sense of identifying the true subset) to:

argmax
j∈Sc

k−1

(
rk T Xj

)2

XT
j

(
I − XSk−1

(
XT

Sk−1
XSk−1

)−1
XT

Sk−1

)
Xj

, (5)

where Sk−1 = supp(βk−1) .

Definition 2 (Objective-based Selection)
By Theorem 1, the new criterion for feature importance outside the
support set could be formulated as criterion (5).
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Optimal Selection and Elimination Criteria
Optimal Elimination Criterion

Theorem 3

Let Ck−1 =
(

XT
Sk−1

XSk−1

)−1
,ej = (δ1i , δ2i , · · · , δii , · · · , δ|Sk−1|i)

T ∈ R|Sk−1|,
where j represents the i-th element of Sk−1 for i = 1,2, . . . , |Sk−1|. The
Kronecker delta function δab is defined as δab = 1 if a = b, and δab = 0
otherwise. Then, problem (Q1) is equivalent (in the sense of identifying the
true subset) to

argmax
j∈Sk−1

yT XSk−1

(
I − ejeT

j

)(
Ck−1 −

Ck−1ejeT
j Ck−1

eT
j Ck−1ej

)(
I − ejeT

j

)
XT

Sk−1
y.

(6)

Definition 4 (Objective-based Elimination)
By Theorem 3, the new criterion for feature importance inside the
support set could be formulated as criterion (6).
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Optimal Selection and Elimination Criteria

A comprehensive derivation and discussion of the proposed criteria
(5) and (6) can be found in Section 3 of our paper [Zhu et al., 2025].

• Degeneration to classic criteria in easy case: When the
features are orthogonal, proposed criteria (5) and (6) degenerate
to the classical correlation-based criterion (3) and the Wald-T
based criterion (4), respectively.

• Comprehensive combination effect: Criteria (5) and (6) take into
account the interaction between features, i.e., the impact on the
other features in Sk−1 resulting from the selection and elimination
of feature j .

• Identical computational efficiency: The matrix Ck−1 or
Cholesky decomposition of XT

Sk−1
XSk−1 has been already computed

in the previous step when updating the coefficients on the
support set Sk−1, so the inversion term in criteria (5) and (6) does
not incur additional magnitude of computational cost.
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Enhanced Algorithms for Best Subset Selection

By leveraging the optimal criteria above, we can perform
Meta-Substitution of the objective-based criteria (5) and (6) into
classical algorithms like MP, OMP, CoSaMP, IHT, and (A)BESS, resulting
in an enhanced algorithm family.

Zhihan Zhu, Yanhao Zhang (BUAA) Optimal Criteria for Best Subset Selection 18 / 43



Introduction Optimal Selection and Elimination Statistics Theory Experiments Discussion Conclusion References Co-authors

Enhanced Algorithms for Best Subset Selection
We classify subset selection algorithms into three categories based on
their combination strategies for feature selection and elimination,
providing one representative for each to show how
Meta-Substitution generates new algorithms:

• Select-Only: This type of algorithm greedily selects feature at
each step. Example: OMP → OP.

• Select-First, Eliminate-Next: This type of algorithms first selects
the features and then removes the irrelevant ones. Example:
CoSaMP → CoSaOP.

• Exchange-Based: This class of algorithms swaps irrelevant
features in the active set with significant features outside the
active set. Example: (A)BESS → OP-(A)BESS.

Beyond these examples, other greedy subset selection algorithms can
also be enhanced through meta substitution scheme. These enhanced
algorithms not only retain the original theoretical properties but also
achieve significant meta-gains across various tasks, scenarios and
evaluation metrics.
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Theory of Optimal Subset Selection Criteria
Define the function f (S) as:

f (S) ≜min
β

∥y − Xβ∥2
2

s. t. supp(β) = S.

With this definition, we present the following theorems.

Theorem 5

For index j∗ selected by criterion (5),

f (S ∪ {j∗}) ≤ f (S ∪ {j}) , ∀j ∈ Sc .

Theorem 6

For index j∗ selected by criterion (6),

f (S\{j∗}) ≤ f (S\{j}) , ∀j ∈ S.
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Theory of Optimal Subset Selection Criteria

Theorems 5 and 6 summarize the previous discussion, demonstrating
that criteria (5) and (6) serve as the optimal decisions in the current
subset selection process.

Theorem 7

The computational complexities of OMP and OP, CoSaMP and CoSaOP, as
well as (A)BESS and OP-(A)BESS, are of the same order of magnitude.

Theorem 7 indicates that the enhanced algorithms have the same
computational complexity as the original algorithms.
We also show how the enhanced algorithms retain the theoretical
properties of the original algorithms, see Section 4 in our paper
[Zhu et al., 2025].
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Theory of Optimal Subset Selection Criteria
Theorems 8 and 9 further demonstrate the significant advantages of
criteria (5) and (6) in the presence of high feature correlation.
Theorem 8

Suppose the true subset S∗ contains indices (i , j), where the correlation
between feature Xi and Xj is ρ =

|XT
i Xj |

||Xi ||2||Xj ||2 . Assuming the current support
set S already includes feature i , then the classical correlation-based
criterion (3) for feature j satisfies:

|rk T Xj |
||Xj ||2

≤
√

1 − ρ2||rk ||2, (7)

while the objective-based criterion (5) satisfies(
rk T Xj

)2

XT
j

(
I − XS

(
XT

SXS
)−1 XT

S

)
Xj

≥ 1
1 − ρ2

(
rk T Xj

||Xj ||2

)2

. (8)

Zhihan Zhu, Yanhao Zhang (BUAA) Optimal Criteria for Best Subset Selection 22 / 43



Introduction Optimal Selection and Elimination Statistics Theory Experiments Discussion Conclusion References Co-authors

Theory of Optimal Subset Selection Criteria

Theorem 9

(1) The upper bound of the objective-based criterion (6) is ||y||22. If the true
subset S∗ is contained within the current subset S, then for all jm ∈ S \ S∗,

||y||22 − ||ϵ||22 ≤ (criterion (6) for jm) ≤ ||y||22.

And in noiseless scenario,

jm ∈ argmaxj∈S objective-based criterion (6).
(2) Suppose a feature Xp in the current subset is pesudo-correlated with an
important feature Xi in the true subset (with correlation 1 − µ). When µ is
sufficiently small, classical T-statistics based criteria (4) could erroneously
discard true features even in simple cases like S = S∗ ∪ {p}, whereas
proposed criterion (6) could correctly identify and remove the spurious
feature Xp.
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Experiment

The comparison involves representative algorithms from the three
categories: OP, CoSaOP, and OP-(A)BESS, evaluated against classical
subset selection methods: OMP, CoSaMP, and (A)BESS, highlighting
the superiority of the enhanced algorithms from various perspectives.
Task: Compressed sensing and sparse regression.
Scenario:
• Measurement rate
• Noise level (SNR)
• Number of features

Evaluation metrics: The number of successful recoveries, NMSE, R2 ,
and runtime.
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Experiment 1: Compressed Sensing (Synthetic
Sparse Data)

In this experiment, we randomly generate β with a dimensionality of
p = 200 and a sparsity level of K = 10. The design matrix X is a n × p
random Gaussian matrix. Let S∗ represent the true support set of the
signal and Ŝ the estimated support set, recovery is deemed
successful if Ŝ = S∗. For each algorithm, we conduct 500
independent runs and record the number of successful recoveries.
Multiple tests are conducted as the sampling rate increases from 25%
to 50% and SNR increases from 15 to 25.
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Experiment 1: Compressed Sensing (Synthetic
Sparse Data)

Figure: Meta-gain comparison of three kinds of subset selection algorithms.
Row one: different sampling rates (SNR = 15). Row two: Varying SNRs
(measurement rate = 0.25).
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Experiment 1: Compressed Sensing (Synthetic
Sparse Data)

In this experiment, we conduct additional comparisons of the
algorithm under extreme scenarios:

• Small-sample rate and high-dimensional vectors: p = 2000,
with n/p varying from 0.05 to 0.1.

• High noise: SNR varies from 5 to 15.
• Highly correlated features (RIP violated): The covariance

matrix of the row vectors of X follows a Toeplitz structure, where
the correlation between position i , j is corrij = ρ|i−j|, with ρ = 0.7.
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Experiment 1: Compressed Sensing (Synthetic
Sparse Data)

Figure: Phase transition with correlated features.
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Experiment 2: Compressed Sensing (Audio Data)

Audio signal exhibits transform sparsity in the DCT
domain[Donoho, 2006]. Therefore, we test our method using
real-world audio data. The data presented here is randomly sampled
from the AudioSet dataset [Gemmeke et al., 2017], consisting of 4
audio signals with full dimensionality p = 480. These signals have
approximately 20–40 non-zero entries (K ) in the DCT domain, with the
number of observations fixed at n = 150.
The normalized mean squared error (NMSE), defined as
NMSE = ∥β̂ − β∗∥2

2/∥β
∗∥2

2 , is used to quantify the recovery
performance. We conducted 100 random experiments, and the
results are summarized in Table 1.
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Experiment 2: Compressed Sensing (Audio Data)

Table: Reconstruction NMSE (mean ± std) for Signals from AudioSet.
Meta-gains are highlighted in red, with the best in bold and the second-best
underlined. (Audio 1-4: -0SdAVK79lg.wav, qxgIqI0uA.wav, 0bN5mYLXb0.wav,
0Jd6JJeyJ4.wav)

NMSE (OMP & OP) NMSE (CoSaMP & CoSaOP) NMSE ((A)BESS & OP-(A)BESS)

Audio Set OMP OP Gains CoSaMP CoSaOP Gains (A)BESS OP-(A)BESS Gains

Audio 1 9.45E-04 (1.35E-03) 7.69E-04 (5.78E-04) 19% 2.36E-03 (1.22E-03) 1.64E-03 (1.36E-03) 31% 1.41E-03 (7.89E-03) 6.22E-04 (2.64E-04) 56%

Audio 2 5.79E-03 (7.89E-03) 5.49E-03 (8.87E-03) 5% 1.87E-03 (6.05E-04) 6.36E-04 (2.01E-04) 66% 6.71E-03 (6.07E-02) 6.36E-04 (2.01E-04) 91%

Audio 3 1.46E-03 (3.13E-03) 1.18E-03 (2.14E-03) 19% 1.54E-03 (5.86E-04) 5.52E-04 (2.03E-04) 64% 2.84E-03 (2.29E-02) 5.52E-04 (2.03E-04) 81%

Audio 4 4.05E-02 (1.03E-01) 3.55E-02 (9.70E-02) 12% 2.85E-03 (9.84E-04) 8.22E-04 (2.22E-04) 71% 2.65E-02 (1.07E-01) 1.86E-02 (1.12E-01) 30%
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Experiment 3: Sparse Regression

In sparse regression tasks, β does not have a ground truth. The goal is
to select sparse features that provide a better explanation of target
variable y. Therefore, similar to the metric used in sparse regression
evaluations in [Qian et al., 2017, Das and Kempe, 2018], we quantify
the explanatory ability of the features using Coefficient of
Determination: R2 = 1 −

∑n
i=1(yi − ŷi)

2/
∑n

i=1(yi − ȳ)2.
We utilize six real-world datasets in our experiments:
(1) Boston Housing Data [Pedregosa et al., 2011],
(2) California Housing Data [Pedregosa et al., 2011],
(3) Superconductivity Data [Hamidieh, 2018],
(4) House 16H [Vanschoren, 2014],
(5) Prostate.v8.egen [Lin and Pan, 2024, Hastie et al., 2017],
(6) Spectra [The MathWorks, Inc., 2025].
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Experiment 3: Sparse Regression

Figure: Rows 1–3 present the meta-gains in feature representation capability
(R2, closer to 1 is better) for the Boston Housing, California Housing,
Superconductivity datasets, House 16H, Prostate.v8.egenes, and Spectra
datasets, respectively, across three algorithms as the number of selected
features K varies.
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Best Subset Selection with Ultra-high Dimensions:
Optimal Gradient Pursuit

In ultra-high-dimensional settings where solving the least squares
problem over a given subset, i.e., solving a linear system, can be
computationally prohibitive, we propose an acceleration scheme for
Optimal Pursuit: Optimal Gradient Pursuit (OGP).

Figure: Optimal Gradient Pursuit.
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Unsupervised Learning: Column Subset Selection

Column Subset Selection (CSS) and PCA are both important
dimensionality reduction methods with widespread applications in
unsupervised learning [Belhadji et al., 2020]. The goal of CSS is to
select a subset of important columns (features) from a dataset that
can better represent the entire dataset, formulated as:

min
S,B

∥X − XSB∥2
F

s. t. |S| ≤ K .

In fact, this problem can also be viewed as a special case of best
subset selection problem. We have extended the optimal pursuit
criterion to the CSS task, demonstrating the advantages of our
proposed criteria over classical criteria in this setting.
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Complex Signal Processing
Although our paper primarily discusses these theories and methods in
the real domain, they can be directly extended to the complex domain.
A classic example in complex signal processing is line spectrum
estimation, widely applied in modern wireless communications.
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Conclusion

• By revisiting classical criteria in traditional algorithms through the
lens of block coordinate descent, we revealed that they only
reflect a one-step variation of the objective function.

• Building on this, we formulated exact optimization subproblems
for feature selection and elimination.

• We derive explicit solutions using forward and backward
matrix inversion.

• The proposed criteria account for both individual feature
significance and interactions, proving optimal for subset
selection.

• Replacing classical criteria with the proposed ones, we developed
enhanced algorithms that retain the original theoretical
guarantees while achieving significant performance gains
across various tasks, scenarios and evaluation metrics, all
without added computational cost.
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Future Work

The results affirm the advantages of the new criteria both theoretically
and practically, opening new avenues for improving best subset
selection algorithms. Future work may consider:

• integrating the proposed criteria into arbitrary greedy subset
selection algorithms to develop enhanced methods and
application on structured sparse learning [Huang et al., 2009],

• developing optimal selection and elimination criteria for general
objective functions,

• investigating statistical inference theories of the new criteria.
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